
QNX® SDK for Apps and Media 1.0

QNX® SDK for Apps and Media 1.0

Metadata Provider Library Reference

©2013–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Monday, February 24, 2014

Table of Contents

About This Reference ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: Metadata Provider Overview ..9

Architecture of libmd ..10

Metadata providers ...12

MDP ratings ..12

Metadata extraction ...12

Included MDPs ...13

Metadata-extraction sessions ...15

Chapter 2: Configuring Metadata Providers ...17

Configuration file ..18

Chapter 3: Metadata Provider API ..21

md.h ...22

Constants in md.h ...22

Data types in md.h ..22

Functions in md.h ...24

md_errors.h ..33

Data types in md_errors.h ..33

Functions in md_errors.h ...34

Metadata Provider Library Reference

Table of Contents

About This Reference

The Metadata Provider Library Reference is aimed at developers who want to write

applications that use the libmd library to extract metadata from media files on

attached devices. This metadata lets applications display track information and artwork

so users can quickly browse device filesystems and search media libraries.

This table may help you find what you need in this reference:

Go to:To find out about:

Metadata Provider Overview (p. 9)The purpose and capabilities of libmd

Included MDPs (p. 13)The list of included Metadata Providers

(MDPs)

Configuration file (p. 18)The libmd configuration file, which lists

the plugins and their preferential order

Metadata Provider API (p. 21)Using the Metadata Provider Library API

to manage metadata-extraction sessions

and retrieve metadata from media files

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Reference

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Reference

http://www.qnx.com

Chapter 1
Metadata Provider Overview

The metadata provider library, libmd, extracts metadata from media files on attached

devices to provide client applications with up-to-date information on the media content

available for browsing or playback.

Metadata is information that describes media files. This information can include details

such as the artist name, album title, or year of creation (for a track), as well as playback

details such as track runtime or picture dimensions. Clients use metadata to:

• display details of the currently playing track to users

• provide the names and other file information of selected tracks to media browsers

• display album artwork to users to enhance their media experience

• generate cover flows so users can visually browse albums and tracks

Clients make requests of libmd to extract specific sets of metadata fields from

individual media files. With this design, clients can retrieve the exact metadata they

need at precise times so they can optimize performance and the user experience. For

example, suppose the user selects a track in their media browser. The application that

provides media information to the browser can extract the track's creation information

fields (which are small and fast to retrieve) but not its embedded artwork images

(which can be large and slow to process). This strategy increases the browser's

responsiveness.

Consider a cover flow application that allows users to visually browse their song

collection and begin playback by selecting an album image. The application can extract

the cover art when generating the flow of albums and then extract the artist name,

year of release, and other album information when the user selects an album image.

This “load-on-demand” philosophy supports a good user experience by ensuring the

exact information—whether images or text—becomes available as soon as the user

needs it.

The multimedia synchronizer service, mm-sync, uses libmd to extract media

metadata so it can upload that metadata to QDB databases. But updating

databases requires indexing most or all files on a mediastore, so you might not

want to rely on mm-sync for obtaining metadata and instead use libmd.

Retrieving metadata through libmd lets you prioritize metadata extraction by

reading metadata from one file or a select group of files.

Copyright © 2014, QNX Software Systems Limited 9

Architecture of libmd

The libmd library uses a plugin architecture in which independent plugins support

different sets of metadata fields. When a client requests metadata, the library extracts

it using one or more plugins and then returns the set of filled-in metadata fields to

the client.

The library is implemented in three layers:

Data processing

This layer:

• stores and updates the plugin ratings for metadata fields from specific

media file types

• collates (i.e., combines and orders) the metadata field values returned

from plugins

Plugin management

This layer:

• parses the configuration file to learn which library files implement the

plugins and to read the preference order for various file types

• loads, initializes, and unloads plugins

Plugins

This layer consists of many Metadata Provider (MDP) plugins, each of which:

• manages communication sessions for responding to metadata requests

and for reporting errors

• rates itself on its ability to retrieve the requested metadata fields

• retrieves metadata by extracting media information from the named item

(media file)

This design lets libmd offer a common, high-level interface for extracting metadata

from many file types on many device types. Clients need to name only a media file

and the metadata fields they want and libmd then invokes the necessary MDP plugins

to read the metadata and returns the extracted metadata fields to the client.

Each MDP fills in as many fields as it can. The order that libmd uses to invoke the

MDPs depends on the plugin preferences stated in the configuration file (p. 18). The

preferential order for plugins can vary from one file type to another.

The file types and their associated URL prefixes supported by libmd are:

10 Copyright © 2014, QNX Software Systems Limited

Metadata Provider Overview

URL prefixFile type

cdda:CDDA track

file:POSIX file

ipod:iPod media file

http:HTTP stream

rtsp:RTSP stream

mtp:File on an MTP device

If no URL prefix is given, the POSIX file type is assumed (e.g., a URL of

/fs/usb0/one.mp3 is equivalent to file:/fs/usb0/one.mp3).

MDPs hide the details of the media interface used for reading metadata so clients can

extract it through different network protocols from a variety of hardware. Clients can

read metadata from the following device types:

• USB sticks, SD cards, or any storage devices with block filesystems

• iPods

• audio CDs

• MTP devices

• media streams from external sources (e.g., HTTP servers)

The plugin-based architecture makes it possible for future releases of libmd

to support additional file and device types. The libmd library could add new

MDPs to provide more sources of metadata while clients continue to use the

same commands to extract it.

Copyright © 2014, QNX Software Systems Limited 11

Architecture of libmd

Metadata providers

Metdata providers (MDPs) are libmd plugins that do the actual metadata extraction

from media files. MDPs tell the data-processing layer of libmd which metadata fields

(types) they can extract. When requested, MDPs read as many of the metadata fields

listed by the client as possible from the specified media item.

MDP ratings

To handle a client request for metadata, libmd queries all loaded MDPs for their

ratings on the metadata fields listed in the request. Each MDP keeps an internal map

of the fields it can extract from media files. This map contains the field names (i.e.,

metadata types) and other information such as which collation method to use for

handling multiple values for a given field. MDPs consult this map to generate lists of

field-specific Boolean ratings (1 means the plugin can extract the field, 0 means it

can't) and then return these ratings to the data-processing layer.

When selecting an MDP plugin as the metadata source, libmd considers only MDPs

that gave a rating of 1 for at least one metadata field, which means they can extract

some or all of the requested information. To pick an MDP within the set of MDPs rated

1 for some field, libmd examines the plugin order for the file type of the media item

named in the request. This plugin order is read from the configuration file during

initialization (see Configuration file (p. 18)).

Metadata extraction

When libmd asks an MDP to retrieve metadata, the selected MDP parses the request

data to obtain either a fully qualified path to the item (media file) or some other

information referencing the item (e.g., a track's unique ID (UID) on iPods). Next, the

MDP uses POSIX system calls or system libraries to browse the device's directories

and files and to read its file information to generate metadata. For instance, the CDDA

plugin calls devctl() to issue device commands to CDs mounted in the local filesystem.

These commands include reading the CD-Text data, which contains album metadata.

The MDP stores the information read from the device in metadata strings and returns

these strings along with the number of metadata types (fields) for which metadata

was found to the data-processing layer of libmd. If the number of types found is less

than the number requested by the client, libmd picks another MDP to get metadata

for the remaining fields. The libmd library continues invoking MDPs until all requested

metadata fields have been filled in or until it exhausts all MDPs.

12 Copyright © 2014, QNX Software Systems Limited

Metadata Provider Overview

Included MDPs

Different MDPs support different file types and metadata fields. When requesting

metadata fields, you must state the metadata categories and the attributes (which

map to individual fields); seemmmd_get() (p. 25) for more details. The libmd library

combines a category (the prefix) with each of its listed attributes (the suffixes) to form

the full names of the metadata fields.

The MDPs shipped with libmd and the file types and metadata fields (expressed as

category and attribute combinations) that each MDP supports is as follows:

AttributesMetadata

categories

FilesMDP

album, artist, genre, name, composer, track,

bitrate, samplerate, duration, format

md_titleCD audio tracksCDDA

name, artist, album, albumartist, composer,

genre, comment, duration, track, disc, year,

md_titleMMF files accessible

from either a network

source (e.g., an HTTP

server) or a POSIX device

MMF

seekable, pausable, samplerate, bitrate,

protected, mediatype (see Footnote.), width, height,

art, compilation, rating

width, height, pixel_width, pixel_height, frame,

fourcc

md_video

fourccmd_audio

image, description, type, mimetype, count, sizemd_artwork

width, height, date_time_original,

shutter_speed, fnumber, iso_speed_ratings,

md_titlePOSIX files on mass

storage devices (e.g.,

USB sticks)

Exif

focal_length, orientation, description,

latitude, longitude, keywords

artmd_titleExternal artwork such as

cover images for albums

Extart

image, count, size, urlsmd_artwork
and thumbnail graphics

for tracks

name, artist, album, composer, genre, year,

duration, comment, protected, track, art

md_titleFiles on MTP devicesMediaFS

image, width, height, size, mimetype, countmd_artwork

artmd_titleiPod media filesiPod

1 The value that libmd returns for the md_title_mediatype field is in decimal but should be converted to
hexadecimal for readability. For the mapping of hexadecimal values to media types, see the MediaFormat_t
data structure description in the Addon Interface Library Reference.

Copyright © 2014, QNX Software Systems Limited 13

Metadata providers

AttributesMetadata

categories

FilesMDP

image, mimetype, width, height, size, countmd_artwork

14 Copyright © 2014, QNX Software Systems Limited

Metadata Provider Overview

Metadata-extraction sessions

To extract metadata with libmd, a client must establish a communication session

with the library before it can issue commands to read metadata from media files stored

on an attached device.

To establish a communication session (or metadata-extraction session) with libmd,

the client must name a mediastore (device) to extract the metadata from. If desired,

the client can then set session parameters to influence the behavior of MDPs. These

parameters can be set only once, so the client should set them just after opening a

session but before extracting any metadata.

The client can use any open session to send requests to libmd to extract metadata

from individual items (media files). In each metadata request, the client must supply

the item's path or some device-specific information identifying the item (e.g., a UID

on iPods) and must list the desired metadata fields. The client can also request a

maximum number of “matches” (i.e., responses returned by different plugins) for

metadata fields. Retrieving multiple values for metadata fields lets a client pick the

set of values that provide the user with the most complete and accurate media

information possible.

Concurrent sessions

Clients can open and extract metadata from as many concurrent libmd sessions as

they like. This design lets applications display media information for multiple devices

to users. We recommend a limit of one session per mediastore to avoid redundant

reads of metadata from the same files.

Obtaining error information

While a session is active, the client can obtain information about the last error that

occurred for that session by calling mmmd_error_info() (p. 24). This function returns

error information, including the numeric error code, a string summarizing the error,

and an error message. We recommend that your client code check the return values

of all API calls. If any value indicates an error, the client can retrieve the error

information and use it to help recover.

Copyright © 2014, QNX Software Systems Limited 15

Metadata-extraction sessions

Chapter 2
Configuring Metadata Providers

You can configure metadata providers (MDPs) in two ways: in the configuration file to

define initial settings and through the libmd API to define settings for individual

metadata-extraction sessions.

During startup, libmd reads its configuration file and loads each listed MDP. After

an MDP loads successfully, libmd initializes it with any settings listed in the

configuration file. These settings apply to the MDP throughout the client application's

lifetime.

When libmd has finished its setup, your client can establish metadata-extraction

sessions and assign parameters to those sessions to influence how MDPs retrieve

metadata.

To assign parameters to active sessions (dynamic parameters), the client must call

mmmd_session_params_set() (p. 31) while providing the session handle and the list

of parameters. Parameters defined in this manner apply only to the session referred

to in the API call. Once set, they can't be changed or unset.

Currently, only the MMF MDP examines dynamic parameters, which it uses to configure

the streamers for reading files from HTTP servers. Whether this plugin is used in

metadata extraction depends on the type of the media item being read and the plugin

preferences stated in the configuration file. When libmd uses other MDPs to read

metadata, dynamic parameters have no effect. You should therefore set these

parameters only when you plan to extract metadata from HTTP servers.

The MDP settings recognized by libmd when parsing the configuration file

(static parameters) differ from those you can assign to an active

metadata-extraction session. See the default configuration file for the supported

static parameters. For information on the dynamic parameters recognized by

MMF, see mmmd_session_params_set() (p. 31).

Copyright © 2014, QNX Software Systems Limited 17

Configuration file

The libmd configuration file lists the preferential plugin order, the library files

implementing the plugins, and other configuration settings.

The libmd library is shipped with a default configuration file

(/etc/mm/mm-md.conf). You can modify this included file or create your own. Before

doing anything else with libmd, your client must callmmmd_init() (p. 28) and supply

either the full path to your own configuration file or a path of NULL to use the default

configuration file. Your client must do this exactly once to initialize the library.

Any section that defines settings for an individual plugin (or MDP) must begin with a

line of the form:

[plugin]

The settings are listed on the lines that follow, one per line. The syntax for an MDP

setting consists of a field name, followed by the equal sign (=), followed by the field

value. For example, the following line enables lazy load filters for MMF:

lazyloadfilters=1

You can also place comments in the configuration file by starting lines with the number

sign (#).

A dll setting is required in every plugin section. This setting names the library file

implementing the MDP plugin. To support a good user experience, your configuration

file should define at least the minimum set of MDPs capable of extracting all the

metadata fields needed by your client applications. Most likely, you'll have to define

more than one plugin section because most MDPs don't support every metadata field.

The section defining the preferential plugin order begins with a line of the form:

[typeratings]

The lines that follow list the MDP preferences for specific file types. Each line contains

a URL prefix that represents a file type, followed by the MDPs to use for metadata

extraction, from most to least preferred. Suppose you want to inform libmd of your

plugin preferences for POSIX files, whose URLs have either a file prefix or no prefix

at all. If you want to use the MMF MDP first and then the Exif MDP if some metadata

fields can't be retrieved by the MMF MDP, enter the following line:

file=mmf,exif

Default configuration file

The contents of the default configuration file look like this:

libmd config file

18 Copyright © 2014, QNX Software Systems Limited

Configuring Metadata Providers

[plugin]
dll=mm-mdp-mmf.so
lazyloadfilters=1

[plugin]
dll=mm-mdp-exif.so

[plugin]
dll=mm-mdp-cdda.so

#[plugin]
#dll=mm-mdp-ipod.so

#[plugin]
#dll=mm-mdp-extart.so
#ignore_case=true
#max_search=100
#max_cache_entries=0

All regular expressions following the first
instance must have a unique suffix appended
to them (e.g., regex, regex1, regex2).
#regex=album\.jp[e]?g
#regex1=folder\.jp[e]?g

#[plugin]
#dll=mm-mdp-mediafs.so

[typeratings]
file=mmf,exif
http=mmf
cdda=cdda
rtsp=mmf
#ipod=ipod
#mtp=mediafs

Copyright © 2014, QNX Software Systems Limited 19

Configuration file

Chapter 3
Metadata Provider API

The Metadata Provider API exposes the constants, data types (including enumerations),

and functions that your client applications can use to initialize the libmd library, create

metadata-extraction sessions, and submit metadata retrieval requests.

The first action any client must perform with libmd is to initialize the library by calling

mmmd_init() (p. 28) while supplying the path of the configuration file, which lists the

metadata providers (MDPs) to load.

Before it can extract any metadata, your client must establish a metadata-extraction

session with libmd by callingmmmd_session_open() (p. 30) while providing the name

of the mediastore (device) to read metadata from.

The client can then request specific metadata fields from specific items (media files)

by calling mmmd_get() (p. 25). The client can ask for a maximum number of matches

(i.e., responses from different MDPs). Retrieving multiple matches lets the client pick

the set of metadata values that provide the most complete and accurate media

information possible.

When it's finished retrieving metadata, the client can close the corresponding session

by calling mmmd_session_close() (p. 30). When it's finished using libmd altogether

(e.g., during shutdown), the client must call mmmd_terminate() (p. 32) to clean up

the resources used by the library.

Copyright © 2014, QNX Software Systems Limited 21

md.h

Defines data types for session handles and error information as well as functions for

managing metadata-extraction sessions, getting metadata from media items, and

retrieving diagnostic and error information.

Constants in md.h

Preprocessor macro definitions in md.h.

Defines:

#include <mm/md.h>

#define MD_COVERART_BYREF "BYREF"

Keyword for returning cover art by reference (MDPs won't write cover art to a file if

requested). Example: md_artwork::image?file=BYREF.

Library:

libmd

Data types in md.h

Data types defined in md.h.

mmmd_error_info_t

Information on the last session error.

Synopsis:

#include <mm/md.h>

typedef struct mmmd_error_info {
 mmmd_errcode_t code;
 int64_t extended_code;
 char extended_type[16];
 char extended_msg[256];
} mmmd_error_info_t;

Data:

mmmd_errcode_t code

The numeric error code.

int64_t extended_code

22 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

The numeric extended error code.

char extended_type

A string containing the extended error type.

char extended_msg

An extended error message.

Library:

libmd

Description:

The mmmd_error_info_t structure describes errors that occurred during a

metadata-extraction session.

This structure may change between libmd

releases.

mmmd_flags_t

Flags for controlling library logs.

Synopsis:

#include <mm/md.h>

typedef enum {
 MMMD_FLAG_EMIT_TIMING_LOGS = 0x01
} mmmd_flags_t;

Data:

MMMD_FLAG_EMIT_TIMING_LOGS

Tells the library to emit timing logs.

Library:

libmd

Description:

The mmmd_flags_t enumeration defines constants for controlling logs for the library.

Copyright © 2014, QNX Software Systems Limited 23

md.h

mmmd_hdl_t

Session handle type.

Synopsis:

#include <mm/md.h>

typedef struct mmmd_hdl mmmd_hdl_t;

Library:

libmd

Description:

The mmmd_hdl_t structure is a private data type representing a session handle.

Functions in md.h

Functions defined in md.h.

mmmd_error_info()

Get information on the last error in a session.

Synopsis:

#include <mm/md.h>

const mmmd_error_info_t* mmmd_error_info(mmmd_hdl_t *hdl)

Arguments:

hdl

The handle of the session whose error information is being retrieved

Library:

libmd

Description:

Get information that describes the last error that occurred in a metadata-extraction

session.

Returns:

A pointer to the error information structure

24 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

mmmd_flags_set()

Set control logs for the library.

Synopsis:

#include <mm/md.h>

mmmd_flags_t mmmd_flags_set(mmmd_flags_t new_flags)

Arguments:

new_flags

The new flags to set

Library:

libmd

Description:

Set control logs for the library, based on the new flags setting.

Returns:

The old flags setting

mmmd_get()

Get the specified metadata fields from the specified item.

Synopsis:

#include <mm/md.h>

int mmmd_get(mmmd_hdl_t *hdl,
 const char *item,
 const char *types,
 const char *source,
 uint32_t count,
 char **md)

Arguments:

hdl

The handle of the session associated with the mediastore where metadata

is being read

Copyright © 2014, QNX Software Systems Limited 25

md.h

item

A URL or an absolute path to the item containing the metadata

types

A string storing the requested metadata types (fields) as a series of

group-attributes listings. Here, group refers to the metadata category (e.g.,

title) while attributes refers to the list of requested attributes (e.g.,

artist, album).

Each group and its list of attributes must be separated by the :: delimiter

and the individual attributes must be separated by commas. Also, each

group-attributes listing must be followed by a line-break character, as shown

in the following example:

md_title::name,artist,album\nmd_video::width,height

This syntactic grouping of metadata types makes it easy to request multiple

related fields.

source

A string specifying the metadata source (i.e., the MDP to use). Currently,

this feature isn't supported so this argument must be NULL to indicate that

all sources can be used.

count

The number of desired matches (i.e., responses from MDPs).

If source is NULL and count is 0, all responses are collated to return the

highest-rated response (see the Description (p. 27) subsection for an

explanation).

If source is NULL and count is nonzero, the number of responses returned

is less than or equal to count, starting with the highest-rated response. No

collation is performed.

md

A pointer to a string pointer that references the buffer storing the response.

The string pointer is set by the function. Examples of the formatting and

typical contents of the response buffer are given in the Description (p. 27)

subsection.

26 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

Library:

libmd

Description:

Get the specified metadata fields from the specified item. The types string must state

the requested fields as group-attributes listings, as explained in the Arguments (p.

25) subsection.

Because different MDPs support different fields, libmd uses as many MDPs as

necessary to extract metadata for all the fields listed in types. The order that libmd

uses to invoke the MDPs is the plugin preference order for the file type indicated by

the URL or path in item. The preference order is stated in the configuration file.

For the lists of fields supported by different MDPs, see Included MDPs (p. 13).

Retrieving multiple responses

Setting count to a value greater than 0 allows you to retrieve multiple matches

(responses) for metadata fields. Your client code can then choose the set of responses

that provides the user with the most accurate and complete metadata possible. The

number of responses returned is less than count if the number of MDPs supporting

any of the requested fields is also less than count. A nonzero value for this argument

simply limits the number of responses that can be returned.

Suppose a client sets count to 3 and requests the md_title_artist and md_ti

tle_orientation fields from a POSIX file while the MDP preference order for

POSIX files is mmf, mediafs, exif. The MMF and MediaFS MDPs support the

first field but not the second; the Exif MDP supports the second field but not the

first. The libmd library stores a pointer in md that references the following string:

md_src_name::mmf\nmd_src_rating::0\nmd_title_artist::some_artist\n
md_src_name::mediafs\nmd_src_rating::1\nmd_title_artist::some_artist
\nmd_src_name::exif\nmd_src_rating::2\nmd_orientation::landscape\0

The name and rating of the MDP that produced the metadata are placed in front of

every metadata field. Ratings are offsets in the zero-based list of preferred MDPs, so

0 indicates the first plugin listed, 1 indicates the second listed, and so on.

Retrieving the highest-rated responses

Setting count to 0 makes libmd collate the responses from many MDPs into one

result set to produce the highest-rated response, which is the set of metadata field

values obtained from the MDPs listed earliest in the plugin preference order.

Suppose a client sets count to 0 and requests the md_title_width, md_ti

tle_height, and md_title_orientation fields from a POSIX file while the MDP

preference order is the same as listed above. The MMF and MediaFS MDPs support

Copyright © 2014, QNX Software Systems Limited 27

md.h

the first two fields but not the last; only the Exif MDP supports the last field. The

libmd library sets md to reference the following string:

md_title_width::response_from_MMF\nmd_title_height::response_from_
MMF\nmd_title_orientation::response_from_Exif

Because MMF is rated ahead of MediaFS, this first MDP's values for md_title_width

and md_title_height are returned. Neither MMF nor MediaFS supports md_ti

tle_orientation, so the value from Exif for this last field is returned.

Returning metadata memory

The metadata pointer (md) should be deallocated using free() when the metadata is

no longer needed. The libmd library sets this pointer to a valid value (i.e., non-NULL)

only if the return value is greater than 0, meaning metadata was found.

Returns:

-1 on error

0 on failure to get metadata (but no errors occurred)

>0 on success (indicating the number of responses)

mmmd_init()

Initialize the library.

Synopsis:

#include <mm/md.h>

int mmmd_init(const char *config)

Arguments:

config

The path to the configuration of the library (may be NULL)

Library:

libmd

Description:

Initialize the library. You must call this function before any other libmd function to

initialize the library before using it. This function loads any metadata providers (MDPs)

listed in the configuration file into the library. The default path for the configuration

file is /etc/mm/mm-md.conf.

28 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

The plugin entries in the configuration file must contain dll attributes that provide

filenames that match the plugin names. All other plugin attributes are ignored by the

library and may be used by the plugins during metadata extraction.

Returns:

0 on success, -1 on error (errno is set)

mmmd_mdps_list()

Get a list of all loaded MDPs.

Synopsis:

#include <mm/md.h>

ssize_t mmmd_mdps_list(char *buffer, size_t buf_len)

Arguments:

buffer

A pointer to a string for storing the comma-separated list of MDP names

(may be NULL)

buf_len

The length of buffer (may be 0)

Library:

libmd

Description:

Get a list of all MDPs successfully loaded and initialized. This function helps diagnose

problems with library initialization.

To obtain the buffer length needed to store the list of all loaded MDPs, call this function

with buffer set to NULL. Use the return value of this first function call to allocate

sufficient buffer memory, then call this function a second time, passing in the updated

buffer pointer to fill in the list of loaded MDPs.

Returns:

On success, a value greater than or equal to 0 that indicates either the buffer length

needed for storing the MDPs list or the amount of data (in bytes) written to the buffer.

On error, -1 is returned.

Copyright © 2014, QNX Software Systems Limited 29

md.h

mmmd_session_close()

Close a metadata-extraction session.

Synopsis:

#include <mm/md.h>

int mmmd_session_close(mmmd_hdl_t *hdl)

Arguments:

hdl

The handle of the session to close

Library:

libmd

Description:

Close a metadata-extraction session.

Returns:

0 on success, -1 on error

mmmd_session_open()

Open a metadata-extraction session.

Synopsis:

#include <mm/md.h>

mmmd_hdl_t* mmmd_session_open(const char *mediastore,
 uint32_t flags)

Arguments:

mediastore

The URL or mountpoint of the mediastore to associate with the session. The

syntax of this argument depends on the mediastore type. For example, to

read metadata from a USB stick, set this parameter to /fs/usb0/ (or

something similar). To read metadata from files stored in the root directory

of your local filesystem, set the parameter to /.

30 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

flags

Must be 0; reserved for future use

Library:

libmd

Description:

Open a metadata-extraction session. The session is associated with the media device

named in mediastore, meaning that you can use it to read metadata from items stored

on that device.

Returns:

A non-NULL session handle on success, NULL on failure (errno is set)

mmmd_session_params_set()

Set parameters for a metadata-extraction session.

Synopsis:

#include <mm/md.h>

int mmmd_session_params_set(mmmd_hdl_t *hdl,
 const strm_dict_t *dict)

Arguments:

hdl

The handle of the session whose parameters are being set

dict

A dictionary of key-value pairs representing the parameters. For information

on creating dictionaries and storing key-value pairs, see the Dictionary Object

API section in the Multimedia Renderer Developer's Guide. For information

on which keys (i.e., parameter names) are supported by the function, see

the Description.

Library:

libmd

Copyright © 2014, QNX Software Systems Limited 31

md.h

Description:

Set parameters for a metadata-extraction session. Once these parameters are set, they

can't be unset or changed. Furthermore, they apply only to MDPs that haven't been

used in the current session, so you should call this function just after calling

mmmd_session_open() (p. 30) but before calling mmmd_get() (p. 25).

Currently, only the MMF MDP uses session parameters, which it passes to the Addon

Interfaces Library (libaoi) when configuring streamers for reading files from HTTP

servers. When libmd uses other MDPs to read metadata, session parameters defined

through this API call have no effect. You should therefore set session parameters only

if you want to read metadata from HTTP servers.

The session parameters that you can apply to MMF are the same as the HTTP-related

options that you can define as context, input, or track parameters in the Multimedia

Renderer Client API.

Returns:

0 on success, -1 on error

mmmd_terminate()

Terminate the library.

Synopsis:

#include <mm/md.h>

int mmmd_terminate(void)

Arguments:

(None)

Library:

libmd

Description:

Terminate the library from use. You must call this function once, and it must be the

last function you call. This function unloads all MDPs from the library.

Returns:

0 on success, -1 on error

32 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

md_errors.h

Defines an enumerated type for error codes and a function for obtaining a string from

an error code.

Data types in md_errors.h

Data types defined in md_errors.h.

mmmd_errcode

Error codes.

Synopsis:

#include <mm/md_errors.h>

typedef enum mmmd_errcode {
 MMMD_ERR_NONE = 0,
 MMMD_ERR_OTHER,
 MMMD_ERR_NO_MDPS,
 MMMD_ERR_NOT_SUPPORTED,
 MMMD_ERR_MALFORMED_REQUEST,
 MMMD_ERR_NO_PARSERS,
 MMMD_ERR_CALLDEPTH_EXCEEDED,
 MMMD_ERR_NO_MEMORY,
 MMMD_ERR_CANT_OPEN_FILE,
 MMMD_ERR_CANT_READ_FILE,
 MMMD_ERR_CANT_RECONFIGURE,
} mmmd_errcode_t;

Data:

MMMD_ERR_NONE

No error occurred.

MMMD_ERR_OTHER

An error not listed here occurred.

MMMD_ERR_NO_MDPS

No metadata plugins are loaded.

MMMD_ERR_NOT_SUPPORTED

The request isn't supported.

MMMD_ERR_MALFORMED_REQUEST

Copyright © 2014, QNX Software Systems Limited 33

md_errors.h

The request isn't properly formed.

MMMD_ERR_NO_PARSERS

No parsers were found for the request.

MMMD_ERR_CALLDEPTH_EXCEEDED

The derived metadata call depth was exceeded (presently not applicable).

MMMD_ERR_NO_MEMORY

No memory is available.

MMMD_ERR_CANT_OPEN_FILE

The file couldn't be opened.

MMMD_ERR_CANT_READ_FILE

The file couldn't be read.

MMMD_ERR_CANT_RECONFIGURE

The configuration was already set (presently not applicable).

Library:

libmd

Description:

The enumerated error codes.

Functions in md_errors.h

Functions defined in md_errors.h.

mmmd_error_str()

Get an English phrase describing the specified error code.

Synopsis:

#include <mm/md_errors.h>

const char* mmmd_error_str(mmmd_errcode_t errcode)

Arguments:

errcode

34 Copyright © 2014, QNX Software Systems Limited

Metadata Provider API

The code of the error you want a descriptive phrase for

Library:

libmd

Description:

This function returns a simple description of the specified error code.

Returns:

A pointer to a string containing the error phrase (always non-NULL)

Copyright © 2014, QNX Software Systems Limited 35

md_errors.h

Index

C

concurrent sessions 15
configuration file contents 18
configuring MDPs 17

D

default configuration file 18

E

establishing sessions 15

H

handling session errors 15

I

included MDPs 13

L

libmd API 21
libmd architecture 10
libmd configuration file 18

libmd introduction 9
libmd layers 10
libmd overview 9
libmd plugins 12

M

md_error.h data types 33
md_error.h functions 34
md.h data types 22
md.h functions 24
MDP metadata extraction 12
MDP ratings 12
metadata 9
metadata matches 15
metadata provider API 21
metadata providers (MDPs) 12
metadata-extraction session 15

S

session error information 15
session parameters 15

T

Technical support 8
Typographical conventions 6

Copyright © 2014, QNX Software Systems Limited 37

Metadata Provider Library Reference

38 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Reference
	Typographical conventions
	Technical support

	Metadata Provider Overview
	Architecture of libmd
	Metadata providers
	MDP ratings
	Metadata extraction
	Included MDPs

	Metadata-extraction sessions

	Configuring Metadata Providers
	Configuration file

	Metadata Provider API
	md.h
	Constants in md.h
	Data types in md.h
	mmmd_error_info_t
	mmmd_flags_t
	mmmd_hdl_t

	Functions in md.h
	mmmd_error_info()
	mmmd_flags_set()
	mmmd_get()
	mmmd_init()
	mmmd_mdps_list()
	mmmd_session_close()
	mmmd_session_open()
	mmmd_session_params_set()
	mmmd_terminate()

	md_errors.h
	Data types in md_errors.h
	mmmd_errcode

	Functions in md_errors.h
	mmmd_error_str()

	Index

