
Multimedia Test Utilities
Guide

QNX® SDK for Apps and Media 1.1

©2014–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 31, 2015

Contents
About This Guide ...5

Typographical conventions..6

Technical support...8

Chapter 1: Role of the Multimedia Test Utilities...9
Multimedia test utilities..10

Using the multimedia test utilities...11

Chapter 2: mmcli..13
Using mmcli instead of other components..14

mmcli command line..15

mmcli language...17

mmcli test scripts...19

mmcli interactive sessions...21

Using mmcli to play media files...23

Chapter 3: mmrplay..25
Using mmrplay instead of mm-renderer..26

mmrplay command line..27

Playback examples...31

Chapter 4: mm-pnp...35
mm-pnp command line...37

Configuring mm-pnp...38

Initialization and termination activities...40

Device monitoring, synchronization, and playback..41

Index...45

Multimedia Test Utilities Guide

Contents

About This Guide

The Multimedia Test Utilities Guide describes the multimedia test and demo tools that help developers

prototype, test, and debug media apps. The binaries of some of these utilities are included in the

installer package, so you can run them from the command line. For other utilities, their source code

is included in the platform's source code package to provide a programming reference for using

multimedia services.

Go to:To find out about:

Role of the Multimedia Test

Utilities (p. 9)

The capabilities of the multimedia test utilities and their role

in the development lifecycle

mmcli (p. 13)How to test the APIs of other multimedia components by using

mmcli

Using mmcli to play media

files (p. 23)

How to play media files through mm-renderer by issuing mmcli
commands

mmrplay (p. 25)How to play media files with single mmrplay commands

mm-pnp (p. 35)How to configure and run mm-pnp to demonstrate the accessing,

extracting, and playing of mediastore content

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

http://www.qnx.com

Chapter 1
Role of the Multimedia Test Utilities

The QNX® SDK for Apps and Media includes several multimedia utilities to help you rapidly prototype,

test, and debug media apps.

These utilities let you issue basic commands to play tracks and upload media information to databases

without having to manage communication sessions with multimedia services or manually define inputs

and outputs. The binaries of mmcli and mmrplay are included in the platform installer, which

unpackages them on your host system. You can obtain the source code for mmrplay and mm-pnp by

downloading the platform's source code package, which is found on the same webpage as the installer.

Using the multimedia test and demo tools, you can:

• learn about the media information flow between the device publishers, the QDB database server,

the mm-sync service, and the mm-renderer service

• adapt the code in the multimedia plug-and-play program (mm-pnp) to customize the process of

detecting mediastores and then synchronizing and playing their media content

• play an audio or video file through mm-renderer by issuing a single command

• exercise the APIs of the multimedia services and libraries included with the product

When you're writing early versions of media apps and you need to support only common use cases, it's

convenient to use the multimedia test utilities because you need to know relatively few commands.

The device publishers and the QDB, mm-sync, and mm-renderer services all have more complicated

command interfaces and require more time to learn and start using. These services should be used in

later development stages to support more complex use cases and to optimize performance and the

user experience.

Copyright © 2015, QNX Software Systems Limited 9

Multimedia test utilities

The QNX SDK for Apps and Media includes these multimedia test utilities:

Source code in
platform source
code package

Binary in
installer

DescriptionUtility

YesTests the APIs of multimedia components by forwarding commands

from a script file or an interactive session to a loaded library or service.

mmcli

YesYesPlays or records media through mm-renderer, after configuring the

service based on command-line options.

mmrplay

YesYesForwards media synchronization commands to mm-sync and reports

synchronization status. This utility is described in the Multimedia

Synchronizer Developer's Guide.

mmsyncclient

YesMultimedia plug-and-play tool, which provides a source code

walkthrough of detecting a device, synchronizing its metadata, and

mm-pnp

playing its media files. You can modify the configuration file to

customize how the tool responds when certain devices are attached.

YesCharacter converter plugin, which can be used for internationalization.charconvert2_icu

YesMonitors database changes made by mm-sync, by using libdbnotify.dbnotifydemo

The source code package for the platform is available at the same download location as the

installer.

Copyright © 2015, QNX Software Systems Limited10

Role of the Multimedia Test Utilities

Using the multimedia test utilities

The test and demo tools are command-line utilities that don't have their own APIs. Instead, users can

enter high-level commands in a QNX Neutrino terminal to automate common media-management tasks.

This design saves you from having to link in client-side libraries (for C programs) or use JavaScript

extensions (for HTML5 apps) to integrate your prototype apps with multimedia services.

You can display a list of supported options for each tool with the use system command, as shown in

the following example for mmcli:

% use mmcli

mmcli [options] [cmdfile]...

Options:

-i DLL [options] -- load interface DLL

-l log_file

-D name=value -- define a global variable

-h file -- save command history to that file

-H -- save command history to "cli.history"

-L -- display time as hh:mm:ss instead of seconds

since start

-v -- increase verbosity of CLI and all loaded

modules

Copyright © 2015, QNX Software Systems Limited 11

Role of the Multimedia Test Utilities

Chapter 2
mmcli

The mmcli utility forwards commands to multimedia components so that you can test their APIs. These

commands can be listed in files or entered in an interactive session.

You must start mmcli with a command line that lists any desired logging options as well as the files

containing the media commands that you want to execute (we refer to these files as test scripts). The

mmcli tool configures itself based on the options given and then executes the test scripts. Then, mmcli
starts an interaction session, which lets you enter media commands and see their results. If you don't

name any test scripts when starting mmcli, the utility just starts the interactive session and waits for

media commands.

With mmcli, you can test the APIs of these multimedia components:

• mm-renderer, for managing playback of single tracks or playlists

• libmd, for extracting metadata from files on mediastores

• libmmplaylist, for navigating playlists and retrieving their tracks

To use the mm-renderer API in mmcli, you must be running the mm-renderer server process.

For instructions on starting mm-renderer, see the Multimedia Renderer Developer's Guide.

Copyright © 2015, QNX Software Systems Limited 13

Using mmcli instead of other components

The mmcli utility helps you to learn the APIs of multimedia libraries and services and to test their

functions without having to integrate those multimedia components with your media apps.

With mmcli, you can start learning and using the multimedia components before you begin developping

the apps that will use them. This learning activity can help you in your initial design of media apps

and your subsequent implementation of media operations within those apps.

When to use mmcli

You should use mmcli if you want to:

• exercise the APIs of multimedia components in an interactive command session

• write and execute test scripts to assess the functionality and performance of multimedia components

• log all media commands and their results so that you can review the command history and analyze

any errors

When to use other components directly

You shouldn't use mmcli, but instead directly call the APIs of multimedia components if you want to:

• write production-level media apps that don't depend on a helper utility to forward commands to

lower-level services

• optimize media operations by avoiding the mmcli overhead of parsing input text and of logging

errors

• customize how you handle errors or events reported by a particular library or service

Copyright © 2015, QNX Software Systems Limited14

mmcli

mmcli command line

Start mmcli to execute test scripts and to accept interactive media commands

Synopsis:

mmcli [-D name=value] [-H] [-h history_file] [-i DLL [options]] [-L]

[-l log_file] [-v] [script_file] ...

Options:

-D name=value

Define a global variable. The string given for this option must contain a name-value pair,

with the name and value separated by an equal sign (=).

Global variables are visible to all test scripts and in the interactive session.

-H

Write the command history to the default history file (cli.history). Commands are written to

this file in the same order that they're executed, whether they're read from test scripts or

entered in the interactive session.

The history file is different from the log file, which you can set with the -l option.

-h history_file

Write the command history to the specified file. As with the -H option, commands are written

in the order that they're executed.

-i DLL [options]

Load the dynamic library of a multimedia component. The API functions of that component

become accessible to mmcli.

The library filename can be followed by a set of parameters for initializing the library. You

must specify the parameters in a comma-separated list of name-value pairs, in which the

name and value in each parameter substring are separated by an equal sign (=). For example,

you can load the mm-renderer library and tell it to connect to the service named "car" and

to create a context named "voice" by setting the following option: -i mmrenderer_cli.so

connect=car,context=voice

You can provide as many -i options as you like to support all the APIs you plan to use. The

available configuration options vary with the library.

-L

When logging, display time as hh:mm:ss.aaa, where aaa is milliseconds. By default,

mmcli displays time as the number of seconds and milliseconds since it was started, in the

format sss.aaa.

Copyright © 2015, QNX Software Systems Limited 15

mmcli

-l log_file

Write the commands issued to mmcli and the results of commands to the specified file in

addition to displaying this information in the interactive session.

The log file is different from the history file, which you can set with the -h option. The log

file provides more information because it contains not only the command history but also

the results of media operations.

-v

Enable verbose mode to log additional information. This option is disabled by default.

script_file

Execute a test script of media commands. To ensure mmcli can support the commands

called by the script, you must either load the necessary library files on the command line

(see the -i option for more information) or use the load command in the script before calling

any API functions.

You can name as many test scripts as you like and mmcli will execute them in the order

listed. This is important to remember if you have dependencies between scripts.

Description:

The mmcli utility loads the libraries of multimedia components so that you can call their API functions

in test scripts or in an interactive session. You can load certain libraries on startup by specifying one

or more -i options on the command line. For any of these options, you can list name-value pairs of

parameters to initialize the library.

You can log the command history (with the -H or -h option) and log the results of commands (with

the -l option). These options allow you to generate and review the complete chronological sequence

of media operations with event timing and other information included. The command history and the

results of commands are always displayed in the interactive session, even if you've disabled logging

to files.

When started, mmcli:

1. examines its command-line settings to configure its logging features and to load the libraries of

multimedia components (as requested)

2. executes the test scripts named on its command line, in the order listed

3. starts an interactive session and waits for you to enter media commands

Note that you don't have to name any test scripts; in that case, mmcli simply skips the second step.

If you do provide test scripts to mmcli, you must load all library files necessary to support the API

commands called by those test scripts. While mmcli can ignore or recover from some command

specification errors, it can't guess at which multimedia component implements a particular command

and then load that component.

The mmcli interactive session stays active until you enter quit to explicitly exit the program.

Copyright © 2015, QNX Software Systems Limited16

mmcli

mmcli language

In addition to supporting the API commands of loaded multimedia components, mmcli has built-in

commands that allow you to define and structure sequences of API commands.

The mmcli utility parses its input line by line to extract commands. The input text can come from test

scripts or an interactive session—mmcli processes commands from both sources identically.

In this sense, mmcli acts like an interpreter for a scripting language. This language includes a group

of built-in functions or keywords and it can be extended with the APIs of multimedia components. For

commands that correspond to API calls, mmcli forwards them to the appropriate components for

execution. The keyword commands control the execution of other commands. For example, there are

keywords for branching, looping, and common functions such as waiting for an event or passing a

command string to the OS. You can use keywords both in test scripts and in the interactive session.

Keywords

The mmcli utility supports these keywords:

DescriptionArgumentsKeyword

List all loaded modules (libraries). The module names are listed three per line, in fixed-width

columns.

cilist

Enable or disable the logging of the current time when writing command history or event

information to files.

on | offclock

By default, this setting is enabled. If you change it in one test script, this setting remains

in effect for all other test scripts until it's explicitly changed.

Print out a line of text.[text]echo

Start the “else” part of a conditional block. This command must be specified after an if,

ifdef, or ifndef command but before its corresponding fi command.

else

Wait for an event for up to n milliseconds.n ev_listexpect

In ev_list, you can list the numbers corresponding to the event types that you want to

monitor. List entries must be separated with either plus signs (+) or commas. If you don't

list any events, mmcli monitors all events.

End a conditional block. This command must be specified after an if, ifdef, or ifndef

command, and that command must not already have another fi.

fi

Read and execute commands from a test script. The script argument contains the test

script filename.

scriptfile

Define a global variable. This variable is visible in all test scripts and in the interactive

session.

name valglobal

Explain all currently available commands or the command named in cmd (if this argument

is given).

[cmd]help

Copyright © 2015, QNX Software Systems Limited 17

mmcli

DescriptionArgumentsKeyword

The available commands include all keyword commands and the API commands of any

loaded module.

Start a conditional block that will be entered depending on the result of the last command.

When ok is given as the argument, the commands that follow will be executed only if the

ok | errorif

last command succeeded. When error is given, the commands that follow will be executed

only if the last command failed.

Note that you can nest blocks.

Start a conditional block that will be entered only if the test specified by cond evaluates

to true.

condifdef

Note that you can nest blocks.

Start a conditional block that will be entered only if the test specified by cond evaluates

to false.

condifndef

Note that you can nest blocks.

List all available API functions. The function names and signatures are listed three per

line, in fixed-width columns.

list

Load a module (library) to make its API functions available. The module argument contains

the library filename.

moduleload

Define a local variable. This variable is visible only in the current test script or the current

interactive session.

name vallocal

Open a file for logging the results of media commands.filelog

End a repeat block. This command is supported only in scripts. The commands before a

loop command but after the last repeat command will be executed n times (where n

is specified by the repeat command).

loop

Close the log file. Command results will no longer be logged.nolog

Exit from mmcli. In interactive mode, this command exits the program. In test scripts,

this command causes mmcli to stop executing the current script and exit altogether, which

quit

is useful if a serious error occurs and you want to shut down the program. Note that other

scripts named later on the command line won't be executed because mmcli will exit

immediately.

Repeat a block of commands. This command is supported only in scripts. The commands

between a repeat command and the next loop command will be executed n times.

nrepeat

Set a delay of n milliseconds between executing commands in test scripts.nsetdelay

Launch a shell and execute a command in that shell (if the cmd argument is given).[cmd]shell

In test scripts, you can examine the return code of the shell command to see if the OS

successfully executed the command specified in cmd. Launching a shell without passing

it a command is impractical in a test script because you can't manually enter commands

and view their results.

Copyright © 2015, QNX Software Systems Limited18

mmcli

DescriptionArgumentsKeyword

In interactive mode, the standard output and error streams from the shell are redirected

to mmcli, allowing you to view the command results. If you don't provide the cmd argument,

mmcli starts a shell process in the foreground so that you can enter and execute commands

in that shell until you close it (by typing exit).

Delay for n milliseconds.nsleep

Set or unset the “trap” condition. If this condition is set, mmcli stops processing the

current test script if a command fails.

on | offtrap

By default, this setting is enabled. If you disable it in one test script, the trap condition

is re-enabled when mmcli begins processing the next test script.

Set the logging level for a module (library). The module argument contains the library

filename. The level argument is either 0 (for "off") or 1 (for "on").

module levelverbosity

By default, logging is off.

mmcli test scripts

You can automate multimedia testing by executing test scripts with mmcli. Test scripts offer a convenient

way of rapidly issuing media commands and logging their results.

For mmcli, test scripts are simply text files that list one command per line. Each command invokes

either a built-in mmcli function or an API function from a multimedia component. The script writer is

responsible for learning the proper syntax (i.e., the command name and the required arguments) for

each command and correctly specifying it; mmcli doesn't correct your input.

To execute a test script, you must either provide its filename on the command line or execute it in

interactive mode with the file command. Unlike interpreters for languages such as Python or Perl, the

mmcli utility can't be named in the first line of a script to allow the file to be executed from a QNX

Neutrino terminal.

Test script example

The following sample test script loads the Multimedia Playlist Library (libmmplaylist), opens a playlist

file, and fetches the playlist entries up to a maximum number of entries:

trap off

load mm-cli-mmplaylist.so

if error

echo Error loading command interface module.

quit

fi

mmplaylist_open / %playlist

Copyright © 2015, QNX Software Systems Limited 19

mmcli

if error

echo Error opening playlist:

echo %playlist

quit

fi

repeat %size

mmplaylist_entry_next_get 1

if error

echo Error retrieving playlist entry.

quit

fi

loop

echo Playlist read complete. Exiting.

quit

The if and fi keywords define error-handling branches, which just print out a brief error message and

exit.

Notice the references to the playlist and size variables in the arguments of the mmplaylist_open

and repeat commands. The percent sign (%) in front of a variable name indicates a variable reference.

For the script to work, you must define these two variables on the command line (with the -D option

for each variable) as follows:

mmcli -Dplaylist=/tmp/music/pl/playlists_all/M3Uv1_test.m3u \

-Dsize=10 /Users/dcarson/work/temp/misc/branching.cli

Alternatively, you can instruct mmcli to load the playlist library before it runs the script. This way, you

don't have to use load in the script. To preload the library, use the -i command-line option, as follows:

mmcli -i mm-cli-mmplaylist.so \

-Dplaylist=/tmp/music/pl/playlists_all/M3Uv1_test.m3u \

-Dsize=10 /Users/dcarson/work/temp/misc/branching.cli

The repeat and loop keywords define the beginning and end of an iterative code section. In this case,

mmplaylist_entry_next_get is called repeatedly to get playlist entries until either the script fetches the

number of entries specified in size or it encounters an error. The argument to this API function is

the playlist handle; its value is hardcoded to 1 because we know that this is the first (and only) playlist

handle created in the script.

The quit command on the last line causes mmcli to exit instead of going into interactive mode. You

can remove this last quit command to keep mmcli active so that you can enter commands interactively

after running the script.

Copyright © 2015, QNX Software Systems Limited20

mmcli

mmcli interactive sessions

After executing any test scripts named on its command line, mmcli starts an interactive session that

allows you to enter media commands and see their results.

The interactive session is helpful for learning built-in mmcli commands (keywords) as well as multimedia

API commands because you can use the help command to list all available commands. These include

the keywords and the APIs of any loaded components. The session also provides tab completion of

partially specified command names and allows you to navigate the list of previous commands using

the up and down arrow keys.

Some commands, notably repeat and loop, work only in test scripts. You can't use them in

interactive mode.

Interactive session example

The following excerpt from an interactive session shows how to use the Metadata Provider Library

(libmd) to read metadata from an MP3 file:

mmcli

Starting...

> load mm-cli-libmd.so

Unable to load DLL "mm-cli-libmd.so": Library cannot be found.

005 Command 'load' failed (-1, errno 2); No such file or directory

> load mm-cli-md.so

> mmmd_session_open /fs/usb0

010 Command 'mmmd_session_open':

sessionID: 1

> mmmd_get 1 /tmp/music/tracks/one.mp3 md_title::artist,album,\

genre,name,comment,duration,width,height,bitrate,\

samplerate,mediatype 0

054 Command 'mmmd_get':

metadata: md_title_artist::U2

md_title_album::Achtung Baby

md_title_genre::Rock

md_title_name::One

md_title_comment::Download from http://www.last.fm/music/U2

md_title_duration::276522

md_title_bitrate::128000

md_title_samplerate::44100

md_title_mediatype::2147483652

> mmmd_session_close 1

> quit

#

Because the first load command specifies an incorrect library name, mmcli outputs an error message.

The second command names the correct library, so mmcli loads the API defined in the library and

doesn't output anything to the interactive session.

Copyright © 2015, QNX Software Systems Limited 21

mmcli

The argument to mmmd_session_open is the mountpoint of the device that metadata is being extracted

from (in this case, a USB stick). The command outputs the numeric ID of the new session, which must

be used as the first argument in the mmmd_get call. The second argument to mmmd_get provides the

path of the track whose metadata we're extracting. Alternatively, you could use the local command at

an earlier point in the script to set this variable locally and then reference this variable in the command

argument by using the percent sign (%) in front of the variable name. The third argument lists the

metadata fields that we're requesting. The fourth argument must be 0 to tell libmd that there's no

preferred plugin for extracting the metadata.

The mmmd_get command outputs the names and values of all metadata fields that it successfully

read. The duration (track length) is given in milliseconds while the bit rate and sample rate are given

in Hertz (Hz). The width and height fields don't apply to audio tracks, so no metadata is retrieved

for these fields.

Finally, the session ID is given again in the call to mmmd_session_close, which doesn't produce any

output.

It's not necessary to call mmmd_init and mmmd_terminate as the first and last libmd functions

because mmcli does this for you.

Copyright © 2015, QNX Software Systems Limited22

mmcli

Using mmcli to play media files

The following mmcli interactive sessions demonstrate common use cases for playing media files with

mm-renderer. The command sequences shown here don't correspond exactly to the API calls needed

if you're using mm-renderer directly, but do show all the configuration steps needed to define a media

flow, configure parameters, and control playback.

Playing an audio file

To start playing an audio file located on a USB stick over the default audio device, enter an mmcli
command sequence like this:

mmcli -i mmrenderer_cli.so

> OutputAttach audio:default audio

018.965 Command 'OutputAttach':

ID: 0

> InputAttach /fs/usb0/tunes/arcade_fire/sprawl(II).wma track

> Play

The OutputAttach command defines an audio output for mm-renderer by specifying a URL of

audio:default and an output type of audio. This URL tells mm-renderer to use automated audio

routing with the Audio Manager service. Because you can define many outputs, mm-renderer returns

an output ID (which is shown on the following line) for each attached output, so you can distinguish

it from the other outputs. You must attach all outputs before attaching the input because mm-renderer
sometimes determines whether it can play an input based on the types of the attached outputs.

Next, the InputAttach command provides a URL with the path of a WMA file stored on a device

mounted to /fs/usb0, and also specifies the track input type (because the input is a single track to

be played in isolation). The Play command then starts playback.

In this first example, the mmrenderer_cli.so library is loaded using -i when mmcli is launched. This

ensures that the mm-renderer API is available from the start of the interactive session. You could also

load the library just after launching mmcli, as follows:

mmcli

> load mmrenderer_cli.so

> OutputAttach audio:default

...

When an audio track is playing, you can adjust its speed (with SpeedSet), seek to a new position

(with Seek), and stop playback (with Stop). For instance, after starting playback with the previous

command sequence, you can give the following commands:

> SpeedSet 0

> Seek 30000

> SpeedSet 1000

> Stop

Copyright © 2015, QNX Software Systems Limited 23

mmcli

This sequence pauses playback (by setting its speed to 0), seeks to a new position 30 seconds from

the track start (as indicated by the 30000 value, which specifies a track offset in milliseconds), resumes

playback at normal speed, and finally stops playback. It's not necessary to pause playback before

seeking to a new position; this was done just as an example of playback control.

Playing a video file

To play a video file stored on the local hard drive, enter a command set like this:

mmcli -i mmrenderer_cli.so

> OutputAttach screen: video

018.965 Command 'OutputAttach':

ID: 0

> OutputAttach snd:/dev/snd/pcmPreferredp audio

018.965 Command 'OutputAttach':

ID: 1

> OutputParameters 1 volume=30

> InputAttach /tmp/video/abilodeau_gold_medal_run.mp4 track

> Play

Here, two outputs are attached—one for the video component, which is rendered by the Screen

windowing service, and another for the audio component, which is outputted over the preferred audio

device (e.g., a speaker). The video or audio output type must be given when calling OutputAttach

for each component. Notice that each output is given a distinct ID, which is displayed on the following

line. The volume of the audio output (whose ID is 1) is set to 30 with the OutputParameters

command. Next, the InputAttach command provides an input URL containing the path of a video

file found in the /tmp/video/ directory. Finally, the Play command starts playing the video and audio

components.

Playing a different media file

When you've finished playing one file and want to play another one, you must detach the current input

and output and then attach a new output before attaching a new input:

> InputDetach

> OutputDetach 0

> OutputDetach 1

> OutputAttach

018.965 Command 'OutputAttach':

ID: 2

> InputAttach /tmp/audio/killers/when_you_were_young.mp3

The InputDetach command requires no parameters because only one input can be set but

OutputDetach requires the ID of the output being detached. You must call OutputDetach for each

attached output. After giving these commands, you can define a new media flow by attaching one or

more new outputs and then the new input.

Copyright © 2015, QNX Software Systems Limited24

mmcli

Chapter 3
mmrplay

The mmrplay utility plays media files by invoking mm-renderer to manage the media flow from an input

to an output. The utility reports any playback errors and also reports when the media finishes playing

(if configured to do so).

The mm-renderer service must be running for mmrplay to work. For information on starting

mm-renderer, see “Starting the multimedia renderer” in the Multimedia Renderer Developer's

Guide.

You can play a media file by providing mmrplay with a single command that contains valid URLs for

an input and an output. The input URL can refer to:

• the path of a media file in the local filesystem

• an HTTP source (including an HTTP Live Streaming broadcast)

• an audio capture device (microphone)

• an SQL query run on a local database

The mmrplay utility accepts the same types of input URLs as mm-renderer. For details on the supported

input URLs, see the mmr_input_attach() function described in the mm-renderer documentation.

To find the path of a media file stored on a connected device (e.g., a USB stick), you must know the

mountpoint assigned to the device when you attached it to your system. The mountpoint and filesystem

information of connected devices can be read from the PPS objects stored in /pps/qnx/mount/, which

are updated by the device publishers when you attach or detach mediastores. These services run

constantly in the background, so the platform automatically mounts mediastore filesystems. The Device

Publishers Developer's Guide provides full information on how the publishers work, including how they

publish device mountpoints in PPS.

The output URL can name an audio or video device (for playback) or a file (for recording, which works

only for audio content). The output URL types supported by mm-renderer (and mmrplay) are described

in the mmr_output_attach() function, also found in the mm-renderer documentation.

The mmrplay command may also contain:

• the name of the mm-renderer service to connect to

• a context name and associated set of parameters

• input parameters (e.g., repeat) and the input type (e.g., track)

• output parameters (e.g., volume)

• logging and verbosity settings

Copyright © 2015, QNX Software Systems Limited 25

Using mmrplay instead of mm-renderer

Although it conveniently abstracts the many steps required to play media through mm-renderer, mmrplay
is limited in terms of the media operations that it supports.

The mmrplay utility can only play a media track or playlist and report any errors and (optionally) the

playback completion. It can't accept any commands during playback to select another input or to

change the playback position or speed. To support these more advanced operations, you must either

use mm-renderer directly or load and then call its API in mmcli.

When to use mmrplay

You should use mmrplay if you want to:

• rapidly and easily prototype a media app by enabling only basic playback, which lets you focus

more on designing other app features

• play media files by issuing a single command instead of the lengthy API call sequence necessary

to connect to mm-renderer, configure an output and an input, start playback, and process and

report events

When to use mm-renderer

You shouldn't use mmrplay, but instead use mm-renderer if you want to:

• offer the ability to pause or stop playback, to adjust the play speed, or to change playlists without

interrupting playback

• reuse the same context for multiple playback operations so that you don't have to redefine the

context parameters

• support configuration of individual tracks in a playlist

• customize how playback events and errors are handled and reported

Copyright © 2015, QNX Software Systems Limited26

mmrplay

mmrplay command line

Play a media file through mm-renderer

Synopsis:

mmrplay [-r connectpath]

[-c contextname] [-m mode] [-C ctxt_param=val]

[[-a audio_url] | [-v video_url] | [-f file_url]]

[[-A audio_param=val] | [-V video_param=val] | [-F file_param=val]]

[-t inputtype] [-I input_param=val] [-D | -Q] [-S] input_url

Options:

-A audio_param=val

Apply a parameter for audio output. The string given for this option must contain a

name-value pair for an output parameter applicable to audio output, with the name and

value separated by an equal sign (=). For the list of audio output parameters, see the

mmr_output_parameters() function in the mm-renderer API description.

By default, no parameters are set for audio output. You can name as many output parameters

as you need, but each must go in its own -A option.

-a audio_url

Name the URL of an audio device to use for output. The URL formats that are valid for

audio output are given in the mmr_output_attach() section of the Multimedia Renderer

Developer's Guide.

This option can be specified only once in the command line and shouldn't be used if you're

using one of the -v and -f options.

-C ctxt_param=val

Apply a parameter to the context. The string given for this option must contain a name-value

pair for a valid context parameter, with the name and value separated by an equal sign (=).

For the list of context parameters, see the mmr_context_parameters() function in the

mm-renderer API description.

By default, no parameters are applied to the context. You can name as many context

parameters as you need, but each must go in its own -C option.

-c contextname

Name the new context that will manage the media flow for this playback operation. The

default context name is “testplayer”.

-D

Enable additional event logging. When this option is set, mmrplay logs messages when the

playback finishes and when the input is detached. This option is handy for knowing whether

playback completed successfully.

Copyright © 2015, QNX Software Systems Limited 27

mmrplay

-F file_param=val

Apply a parameter for file output. The string given for this option must contain a name-value

pair for an output parameter applicable to file output, with the name and value separated

by an equal sign (=). See mmr_output_parameters() for the list of file output parameters.

By default, no parameters are set for file output. You can name as many output parameters

as you need, but each must go in its own -F option.

-f file_url

Name the URL of a file to use for recording media content. See mmr_output_attach() for

the list of URL formats that are valid for file output.

This option can be specified only once in the command line and shouldn't be used if you're

using one of the -a and -v options.

-I input_param=val

Apply a parameter to the input. The string given for this option must contain a name-value

pair for a valid input parameter, with the name and value separated by an equal sign (=).

For the list of input parameters, see the mmr_input_parameters() function in the mm-renderer
API description.

By default, no parameters are applied to the input. You can name as many input parameters

as you need, but each must go in its own -I option.

-m mode

Set the file permission flags for the directory to be used by the new context. By default, the

directory has the same read and execute permissions as the user.

-Q

Disable event logging except for errors and warnings. By default, mmrplay logs information

not only for errors and warnings but also for updates to track metadata or to the playlist

window. This option is handy for minimizing the logging while still seeing serious errors.

-r connectpath

Name the mm-renderer service to connect to. If you don't provide this option, the default

service is used.

-S

Remain open after the end of video playback until explicitly signalled. When this option is

enabled, the last rendered screen will remain visible until the client issues either the slay

or Ctrl–C command.

-t inputtype

Set the input type. Acceptable values are: track, playlist, and autolist. The default

setting is track.

-V video_param=val

Apply a parameter for video output. The string given for this option must contain a name-value

pair for an output parameter applicable to video output, with the name and value separated

Copyright © 2015, QNX Software Systems Limited28

mmrplay

by an equal sign (=). By default, no parameters are set for video output. You can name as

many output parameters as you need, but each must go in its own -V option.

For video outputs that use the screen: URL type, the recommended way to set

window properties is either in the URL itself (when attaching the output) or through

the Screen library (after you've attached the output). Currently, no useful properties

can be set by defining output parameters with -V, but this option could be used

if new parameters for screen: URLs or new URL types for video output are defined

in future releases.

-v video_url

Name the URL of a video device to use for output. See mmr_output_attach() for the list of

URL formats that are valid for video output.

This option can be specified only once in the command line and shouldn't be used if you're

using one of the -a and -f options.

input_url

Name the URL of the input source. This parameter is required because mmrplay must be

told what to play or record. The input URL is passed to mm-renderer, which supports these

input sources:

• files in the local filesystem, including those on attached mediastores mounted in the

filesystem

• HTTP streams, including live broadcasts

• audio capture devices (microphones)

• query results from SQL-driven databases

For the list of valid URL formats for each input type, see the mmr_input_attach() function

in the mm-renderer documentation.

Description:

The mmrplay utility plays media files by invoking mm-renderer to manage the media flow from the

specified input to the specified output. You can name only one input in the command line, but this

input can be a playlist if you want to play multiple tracks in sequence.

The output that you name can be an audio or video device or a file. If you provide URLs for

more than one output type on the command line, mmrplay selects the URL to use as the media

stream destination in the following order (from most to least preferred): file, video, and audio.

For each input you want to play, you need to provide only one command to mmrplay and the utility

then configures and uses mm-renderer to play the specified input. Each mmrplay command opens a

new connection and creates a new context with mm-renderer to start the playback. When the playback

finishes, mmrplay detaches the input and closes the connection.

Note that mmrplay detects only basic command-line errors, such as invalid options, and doesn't validate

the values given for recognized options. Instead, mmrplay forwards these option values to mm-renderer,

Copyright © 2015, QNX Software Systems Limited 29

mmrplay

which validates them. The mmrplay utility displays any parameter errors reported by mm-renderer to

standard error.

By default, mmrplay logs information for:

• errors and warnings related to playback

• metadata updates for a playlist entry

• changes to the playlist window (e.g., the playlist position moved forward by one track, causing

another track to enter the playlist range)

When provided with the -V option, mmrplay logs additional messages when the playback finishes

(which indicate whether it finished normally or abnormally) and when subsequently detaching the

input and closing the connection to mm-renderer. The -Q option enables logging for only error and

warning events.

The mmrplay utility is purely a command-line tool; it has no client library exposing an API in C. Once

started, mmrplay runs as a self-contained process that doesn't require any user input or accept any

commands. You can't cancel the playback or change its speed or position once it's started, and you

can't save the input and output URLs or their parameters for subsequent operations. This last design

point means that each mmrplay command must specify all the parameters to use for that particular

playback operation.

Copyright © 2015, QNX Software Systems Limited30

mmrplay

Playback examples

The following mmrplay commands demonstrate common use cases of playing or recording media files.

The media files accessed here are encoded in popular formats such as MP3, M4A, and WMA, but all

mmrplay commands have the same syntax and support the same options, regardless of the media file

format.

In these examples, the input URLs are pathnames in the local filesystem. These can be the paths of

files that you uploaded or files stored on connected devices. When you attach a mediastore (e.g., a

USB stick, an audio CD) to your system, the device publisher that monitors devices of the same type

as the newly attached device will publish its mountpoint to a PPS object in /pps/qnx/mount/. For

instance, when you plug in a USB stick, the usblauncher service assigns it a mountpoint of /fs/usb0
(or something similar). For information on how the device publishers assign mountpoints and publish

device information, see the Device Publishers Developer's Guide.

The mmrplay playback commands automate the tasks of attaching outputs and inputs and configuring

their parameters, which must be done in separate mm-renderer API calls before you can play media

files. For examples of all the mm-renderer actions needed to configure and control the playback of

media files, see “Using mmcli to play media files (p. 23)”.

Playing an audio file

To play an MP3 audio file located on an attached USB stick over the default audio device, enter a

command like this:

mmrplay /fs/usb0/stillness_in_time.mp3

This command doesn't name an audio output URL using -a because mmrplay will output the media

file to the default audio device if you don't specify an output URL. In this case, mmrplay sends an

output URL of audio:default to mm-renderer, which tells it to use automated audio routing with

the Audio Manager service. If mm-renderer doesn't accept this URL, mmrplay then sends it the device

pathname of the preferred audio device (e.g., /dev/snd/pcmPreferredp). If mm-renderer can't use this

device either, the playback command fails.

You can set the volume by defining it as an audio output parameter with the -A option. You can also

explicitly state that the input type is a track (not a playlist) by using the -t option:

mmrplay -A volume=30 -t track /fs/usb0/stillness_in_time.mp3

The output device is independent of the input format, so you would use the same command syntax to

play other types of audio files (e.g., WMA, WAV), except that your input URL would contain a filepath

with a different extension.

Playing a playlist

The command syntax for playing the tracks in a playlist is similar to that for playing an individual track,

except that you must state the playlist input type (using -t) and you can also set the repeat input

parameter (using -I):

mmrplay -t playlist -I repeat=none /fs/usb0/u2_best_of_80s.m3u

Copyright © 2015, QNX Software Systems Limited 31

mmrplay

This command sets the repeat mode to none to prevent mm-renderer from continuously playing either

a single track or the entire set of tracks in the playlist. If you set a different repeat mode (e.g., all),

mmrplay would initiate playback in mm-renderer but then wait indefinitely for the playback to stop

(because it would never receive an mm-renderer event indicating that playback has stopped). In this

case, you would have to use the mm-renderer API or mmcli to explicitly stop playback in the context

created by mmrplay when you issued the playback command. Stopping playback in a context requires

knowing its name, which can be set with -c:

mmrplay -c test_playlist_looping -t playlist -I repeat=all \

/fs/usb0/u2_best_of_80s.m3u

In this case, mmrplay creates a context called test_playlist_looping in mm-renderer and then

initiates continuous playback of the entire track set in the u2_best_of_80s.m3u playlist. To stop

playback in a client application or mmcli, you would have to connect to mm-renderer (using

mmr_connect()), open the existing test_playlist_looping context (using mmr_context_open()),

and then stop playback in that context (using mmr_stop()). For full details on connecting to mm-renderer
and working with contexts, see the Multimedia Renderer Developer's Guide.

Playing a video file

To play an MP4 video file, enter a command like this:

mmrplay -v screen: /fs/usb0/seven_days_live.mp4

Here, the video output URL has a prefix of screen: to tell mm-renderer to output the video stream

to the Screen windowing service, which renders it to the display. You can set some properties of the

output window in this type of URL, as explained in mmr_output_attach().

If you want to play video without any audio output, you can add the -a option and specify an empty

URL:

mmrplay -a "" -v screen: /fs/usb0/seven_days_live.mp4

Recording audio content

To record audio content to a file, enter a command like this:

mmrplay -c test_audio_recording -f /tmp/my_karaoke.wav \

snd:/dev/snd/pcmPreferredc?frate=44100&nchan=2

This command directs the audio output to a WAV file named with -f. Here, the input URL names the

preferred audio capture device and provides parameters to set the sampling rate (frate) and the

number of channels (nchan). You can find a list of all supported parameters for this URL type in the

mmr_input_attach() function description.

The snd: input URL type works only with file output, so you must provide a file output URL

when using this input URL type.

Copyright © 2015, QNX Software Systems Limited32

mmrplay

Similar to playing a playlist with the repeat mode enabled, recording audio content causes mmrplay
to initiate playback with mm-renderer but to never process an event indicating playback has stopped.

If you start recording audio with an mmrplay command like the one shown here, you must then explicitly

stop the recording by stopping playback in the test_audio_recording context, by either directly

calling the mm-renderer API or using mmcli.

Copyright © 2015, QNX Software Systems Limited 33

mmrplay

Chapter 4
mm-pnp

The multimedia plug-and-play tool, mm-pnp, is a demo program that exposes the process of detecting

a mediastore, uploading its media information to a database, and playing its media files.

This demo program provides a helpful reference for writing your own media apps because it performs

all the common media-management tasks. However, the mm-pnp program doesn't directly access

media content or manage media streams. Instead, it uses other platform services to monitor which

mediastores (i.e., devices) are attached and to synchronize and play their media files. You can customize

how mm-pnp synchronizes and plays content for different device types (e.g., iPods, USB sticks, CDs)

by modifying its configuration file.

Source code

The source code for this program is included in the platform's source code samples package, which

you can download from the same location as the installer. Note that the appropriate makefiles are also

included in the samples package, so you can build the program with the gcc compiler on a development

system.

The mm-pnp code provides a walkthrough of the API call sequences that detect when the user attaches

a mediastore and then access, extract, and play its content. The program is written in C and contains

just over 3000 lines of code, including whitespace, comments, and preprocessor directives. The code

is organized into the following modules:

plug and play

Implements the main thread, which parses the command-line options and starts and stops

child threads.

config

Defines default values for all configuration options and parses the configuration file to extract

and store all user-specified options.

PPS monitor

Implements two child threads. One thread monitors Persistent Publish/Subscribe (PPS)

mount objects to detect when the user attaches a device. Meanwhile, the other thread

monitors QDB status objects to respond appropriately when media databases are loaded or

unloaded.

DB manager

Provides a callback mechanism so that you can define your own responses to database

status changes.

sync

Stores the lists of pending and active synchronizations and communicates with mm-sync,
which performs the synchronizations. Also, implements the child thread that handles mm-sync
events.

Copyright © 2015, QNX Software Systems Limited 35

playback

Stores the list of playlists and communicates with mm-renderer, which plays those playlists.

linked list

Defines data types used in lists and implements the functions for iterating through lists and

for adding and removing elements.

logging

Stores the verbosity level and the list of active logging destinations (e.g., sloginfo, stdout).
Also, defines the functions for writing log entries.

Copyright © 2015, QNX Software Systems Limited36

mm-pnp

mm-pnp command line

Run mm-pnp to demonstrate how to access, extract, and play mediastore content

Synopsis:

mm-pnp [-c config_file] [-v[v...]]

Options:

-c config_file

Specify a configuration file that defines synchronization and playback policies for specific

device types.

If you don't provide the path for a configuration file, mm-pnp reads the default file

(/etc/mm/mm-pnp.conf).

-v

Increase output verbosity. Messages are written to sloginfo.

The -v option is handy when you're trying to understand the operation of mm-pnp, but when

lots of -v arguments are used, the logging becomes quite significant and can change timing

noticeably. The verbosity setting is good for systems under development but should probably

not be used in production systems or during performance testing.

Description:

The mm-pnp program demonstrates the process of detecting a new mediastore, uploading its media

information to a database, and playing its media files.

The program constantly monitors the PPS mount objects to readily detect when the user attaches a

mediastore. In response to this user action, mm-pnp invokes the multimedia services necessary to

synchronize and play the mediastore's content.

You can modify the configuration file (p. 38) to customize how mm-pnp uses those other services to

manage content read from a particular device type. These settings tell mm-pnp where to look in the

mediastore filesystem to find media files, whether or not to automatically start playback, and more.

Once started, mm-pnp runs as a self-contained process that doesn't require any user input or accept

any commands. The program remains active, responding as configured when the user attaches

mediastores, until you forcibly terminate the program with Ctrl–C or the kill() command.

Copyright © 2015, QNX Software Systems Limited 37

mm-pnp

Configuring mm-pnp

You can configure mm-pnp by changing the settings in its configuration file. These settings define the

directories and device paths used for writing media databases and managing playback. They also define

parameters that control how media content from specific device types is synchronized and stored.

The command line for starting mm-pnp doesn't support any configuration options; you must use the

configuration file to define any nondefault settings for multimedia services and to customize media

synchronization and database management for different device types. The configuration file offers a

convenient way to change the behavior of mm-pnp without modifying and recompiling the code.

The mm-pnp program defines default values for all configuration options so there are no

mandatory option settings for the configuration file.

Configuration file contents

The configuration file is a text file with one setting defined per line. Each line consists of an option

name, followed by the equal sign (=), followed by an option value. For readability, you can enter

comments by starting lines with the number sign (#).

The first section of the file defines settings that affect the operations of the other multimedia services

used by mm-pnp. These settings are independent of the device type, and they include:

• the hardware device that mm-renderer uses for audio output

• the PPS directories to scan for mount objects and QDB database configuration objects

• the mountpoints used by each multimedia service (expressed as device paths in /dev)

• the prefix that QDB uses in database names

• the maximum number of concurrent synchronizations across all device types

In the default configuration file (/etc/mm/mm-pnp.conf), the first section looks like this:

audio_device=snd:/dev/snd/pcmPreferredp

qdb_mountpoint=/dev/qdb

renderer_mountpoint=NULL

pps_pub_root=/pps/qnx

pps_qdb_root=/pps/qnx

qdb_db_modifier=db_

sync_mountpoint=/dev/mmsync

sync_max=5

The subsequent sections define settings that affect how mm-pnp uses the other multimedia services

to upload and store media information read from particular device types. These settings include:

• the directory used to hold the raw storage files for media databases

• the files that define the schema and initial contents of databases

• a flag indicating whether to play a device's media content right after synchronizing that content

• the location within the device's filesystem to look for media files

• other flags that control which information gets synchronized

Copyright © 2015, QNX Software Systems Limited38

mm-pnp

Each of these sections must begin with a line that names the device type whose media operations are

being configured (with the name enclosed in square brackets). The name of the device type must be

one of the following:

• device_unknown

• device_local

• device_usb

• device_ipod

• device_pfs

• device_audiocd

• device_datacd

• device_mmc

• device_sd

In the default configuration file, the section that configures USB devices looks like this:

[device_usb]

sync_max=1

sync_path=/

sync_mask=0x4003

play_device=true

db_directory=Filename::/fs/tmpfs/

db_schema=SchemaFile::/etc/mm/sql/mmsync.sql

db_data_schema=DataSchemaFile::/etc/mm/sql/mmsync_data.sql

Global vs. device type synchronization limits

The global synchronization limit defined in the first section of the file applies over all type-specific

synchronization limits defined in subsequent sections. For example, suppose you set sync_max to 5

in the first section but also set sync_max to 3 in the [device_usb] section. If mm-pnp starts two

synchronizations for USB devices while three synchronizations for other device types are in progress,

the program won't start a third synchronization for a USB device. No more content from USB devices

can be uploaded or played until one of the current synchronizations completes.

You can set sync_max to 0 to disable media synchronization for a particular device type or

for all device types.

Copyright © 2015, QNX Software Systems Limited 39

mm-pnp

Initialization and termination activities

Before it can synchronize and play media content, mm-pnp must parse its configuration file, configure

other services, and start child threads. When the main thread receives the termination signal, it stops

the child threads and cleans up resources.

By understanding the initialization and termination activities of mm-pnp, you can modify the program

to log different information or support new configuration options. Or, you can use the code as a reference

for writing multithreaded media apps.

The main thread of mm-pnp performs the following tasks:

1. Setting up logging

At startup, the main thread initializes the logging service and adjusts the verbosity based on the

-v command-line options. Messages outputted to sloginfo by mm-pnp are tagged with “mm-pnp”.

2. Parsing the configuration file

The main thread parses the configuration file and stores the configuration option settings. The

mm-pnp program uses separate symbol tables when parsing different file sections to remember

which settings apply globally and which ones apply to individual device types (see “Configuring

mm-pnp (p. 38)” for information on the file sections).

3. Setting up multimedia services

To enable media synchronization and playback, mm-pnp connects to QDB, mm-sync, and

mm-renderer. It also creates lists to hold the information needed by these services, which includes:

• mediastore profiles, which store the mountpoints and device types of attached mediastores

• details on pending and on active synchronizations

• playlists ready to be played

4. Launching child threads

After the program setup is complete, the main thread launches three child threads:

Device monitoring thread

Reads a PPS object to obtain mountpoint information on newly attached devices, and

then passes this information to QDB to load media databases.

Database monitoring thread

Monitors QDB status objects to learn when databases finish loading. In response, the

thread invokes mm-sync to start synchronizing the media information from the

corresponding devices.

Synchronization event-processing thread

Reads mm-sync events to learn when media file information has been synchronized. In

response, the thread creates playlists based on the synchronized information and invokes

mm-renderer to play them.

These child threads work with other multimedia services to automatically extract media information

and play media files when the user attaches a device (for details, see “Device monitoring,

Copyright © 2015, QNX Software Systems Limited40

mm-pnp

synchronization, and playback (p. 41)”). After launching the child threads, the main thread begins

monitoring signals to wait for the termination request.

5. Shutting down

The mm-pnp programs runs until you issue the termination signal by using Ctrl–C or the kill()

command. When you tell it to shut down, the main thread:

• terminates the child threads

• disconnects from the multimedia services

• destroys the lists that store mediastore, synchronization, and playlist information

Device monitoring, synchronization, and playback

An mm-pnp child thread monitors a device-related PPS object and indirectly invokes QDB to load the

appropriate database in response to a device attachment. Then, a second thread synchronizes the

device's media content using mm-sync. Finally, a third thread plays the content using mm-renderer.

These tasks are performed in an automated, ongoing process. Understanding this process is essential

if you want to adapt mm-pnp to demonstrate a different synchronization and playback policy, or if you

want to use the code as a basis for your own media apps.

When the user attaches a device, the mm-pnp threads and the multimedia components work together

to synchronize and play media content, as illustrated here:

Audio
output

QDB
databases

mm-renderer

mm-sync

mm-pnp

Device monitor
thread

Database monitor
thread

mm-sync event-
processing thread

QDB
server

qdb/status

qdb/config

mount

PPS
Device

publishers 1

2

3 4

5

6

7

8

9

10

11

12

Figure 1: Interaction between mm-pnp and multimedia components

Copyright © 2015, QNX Software Systems Limited 41

mm-pnp

The synchronization and playback process is triggered when the user attaches a device. At that point,

mm-pnp and the multimedia components perform the following tasks:

1. Reporting device attachments

The device publisher that monitors the hardware events triggered by the device's attachment (e.g.,

USB bus notifications or SD card insertions) writes the device's information to PPS.

2. Extracting device information

The mm-pnp device monitoring thread reads this information, which includes the mountpoint and

device type, from PPS, then saves the information in the mediastore profiles list.

3. Publishing the database configuration

Based on the database settings defined for the device type, the same thread publishes the

configuration for the QDB database that will store the device's media information.

4. Loading the database

When mm-pnp publishes the PPS object to the QDB configuration directory (/pps/qnx/qdb/config/),
the QDB server begins loading the device's database.

5. Reporting database status

The QDB server reports the outcome of the database load operation by writing the database's new

status to a PPS object in the QDB status directory (/pps/qnx/qdb/status/).

6. Looking up device information

The database monitoring thread reads database statuses from a special PPS object (by default,

/pps/qnx/qdb/status/.all). When it learns that a database has been loaded successfully, the thread

uses the database name to look up the corresponding device's information in the mediastore profiles

list. From this list, the thread obtains the device's mountpoint and synchronization path, which it

then stores in a new entry in the pending synchronizations list.

7. Starting synchronizations

Before it can start a synchronization, mm-pnp must check the limits on the number of concurrent

synchronizations allowed for all device types and for the device type of the first entry in the pending

synchronizations list. If these limits have not been exceeded, the database monitoring thread passes

the mountpoint and synchronization path stored in the first list entry to mm-sync, which starts

synchronizing the device's media information. Then, the thread moves the entry from the pending

synchronizations list into the active synchronizations list.

If the synchronization limits have been exceeded, mm-pnp instead waits for one of the active

synchronizations to finish and when this happens, it starts another synchronization.

If you extend the DB manager (p. 36) module to define additional operations for handling

database status changes, the database monitoring thread should perform these operations

right after it calls mm-sync.

8. Writing file information to the database

The mm-sync service reads file information from media tracks on the device, then invokes QDB to

store this information in the device's database (which was loaded in Step 4 (p. 42)).

Copyright © 2015, QNX Software Systems Limited42

mm-pnp

9. Notifying about file information uploading

When mm-sync finishes uploading the file information to the database, the service generates the

MMSYNC_EVENT_MS_1PASSCOMPLETE event. The synchronization event-processing thread receives

this event and in response, looks up the device's entry in the active synchronizations list to obtain

the database name.

10. Specifying a playlist

The same thread uses the database name to define a playlist for playing the device's media content.

The playlist is based on an SQL query that retrieves information from all the files listed in the

database.

The thread then invokes mm-renderer to:

a. create a new context

b. attach the output to the default sound device to enable audio output

c. attach the newly defined playlist as the input

d. start playing the playlist

Because you can name only one output device for mm-renderer to use, mm-pnp stops any

current playback when it processes an MMSYNC_EVENT_MS_1PASSCOMPLETE event. So,

the program always begins playing the media content of the latest device attached to the

system.

11. Querying filenames in the database

The mm-renderer service extracts the names of all media files listed in the database by running

the SQL query that mm-pnp provided as the playlist basis. The service must know the filenames

to play their media content.

12. Outputting playlist tracks

The mm-renderer service then starts playing the tracks in the playlist. The tracks are played in

sequence, with no repeating, until the entire playlist has been played.

Copyright © 2015, QNX Software Systems Limited 43

mm-pnp

Index

C

configuring mm-pnp 38

D

displaying options of multimedia test utilities 11

E

entering commands in interactive mode of mmcli 21

executing test scripts with mmcli 19

M

mm-pnp 35, 37–38, 40–41

child threads 41

command line 37

configuration file 38

description 37

device monitoring, synchronization, and playback

process 41

initialization and termination activities 40

main thread 40

options 37

overview 35

source code 35

mmcli 13, 15–17, 19, 21, 23–24

command line 15

description 16

interactive session example 21

interactive sessions 21

keywords 17

language 17

options 15

overview 13

playing a video file 24

playing an audio file 23

mmcli (continued)

test script example 19

test scripts 19

mmrplay 25, 27, 29, 31–32

command line 27

description 29

options 27

overview 25

playing a playlist 31

playing a video file 32

playing an audio file 31

playing media files on local devices 31

recording audio content 32

multimedia test utilities 9–10

binaries included in the installer package 10

listing 10

overview 9

role in app development 9

R

running mmrplay 27

S

starting mm-pnp 37

starting mmcli 15

T

Technical support 8

Typographical conventions 6

U

using mmcli instead of other components 14

using mmrplay instead of mm-renderer 26

using the multimedia test utilities 11

Copyright © 2015, QNX Software Systems Limited 45

Index

Copyright © 2015, QNX Software Systems Limited46

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Role of the Multimedia Test Utilities
	Multimedia test utilities
	Using the multimedia test utilities

	mmcli
	Using mmcli instead of other components
	mmcli command line
	mmcli language
	mmcli test scripts
	mmcli interactive sessions

	Using mmcli to play media files

	mmrplay
	Using mmrplay instead of mm-renderer
	mmrplay command line
	Playback examples

	mm-pnp
	mm-pnp command line
	Configuring mm-pnp
	Initialization and termination activities
	Device monitoring, synchronization, and playback

	Index

