QNX® SDK for Apps and Media 1.1

Application and Window
Management

©2014-2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road

Ottawa, Ontario

K2K 0B3

Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@gnx.com
Web: http://www.gnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 31, 2015

Application and Window Management

Contents

Y o010 I T F- €0 - 5
TYPOgraphiCal CONVENTIONS. .. .iiu it e e e e e e e e e et e e e et e e et e e et eeeanees 6

B E=Ted gL ot TR0 o] o Lo o FA TSR PPSUPURNE 8
Chapter 1: Packaging, Installing, and Launching ApPPS.........coiirruiiiimmiiiiiir e 9
Packaging a native C/C++ app for installation...........cccouiiiiiiiiii e 10
Installing a packaged app 0N the target... ..o 11
Launching an app 0N the Target.o e 12
Stopping all @apps 0N The Target..... i e 13

(UL VT a1 = g T= g o o PP 14
Sample bar-descriptor . XML FIlES. ... e 15
Chapter 2: Creating Your Own Application Window Manager............cccovieuiiieiiiiecisiec s e e e s e e eenas 19
Application ManNageMENto e 20
Interacting with the /pps/services/launcher/control object.......cccoviiiiiiiiiiinnnnnn. 20

Starting an appliCation ... 23

Stopping an apPliCatioN........ i 24

WINdOW Managemento e et et e e et aea e aan 25

SEE UP SCIBEM et ettt et e 25

Handle SCrEEN EVENTS.....uui ittt e e e e eeeens 28

An example of a simple application Window mManager............cccouiiiiiiiiiiii i 32
LS o A o 33

L= YT o TR« PSP 36

SR oY= o NP N 38

L6 o 1= S 58

o) ST T T PPN 60

o o = P 65

Contents

About This Guide

Application and Window Management describes the process of starting and stopping applications. This
guide also explains how windows interact with the HMI and how to write your own window manager.

This guide is intended for developers who will be creating and deploying apps for embedded devices
running QNX Neutrino.

The following table may help you find information quickly:

To find out about: Go to:

Creating an archive for a native C/C++ app Packaging a native C/C++ app for installation (p. 10)
Installing an app on your target Installing a packaged app on the target (p. 11)
Launching an app Launching an app on the target (p. 12)

Stopping apps Stopping all apps on the target (p. 13)

Removing apps from your target Uninstalling Apps (p. 14)

Managing the life cycle and appearance of your | Creating Your Own Application Window
applications Manager (p. 19)

'S For instructions on how to create apps, see the following:

=

e HTML5 Developer's Guide
e Qt Developer's Guide
e |DE User's Guide

Copyright © 2015, QNX Software Systems Limited 5

About This Guide

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In
general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

Reference Example

Code examples
Command options
Commands

Constants

Data types
Environment variables
File and pathnames
Function names
Keyboard chords
Keyboard input
Keyboard keys
Program output
Variable names
Parameters
User-interface components

Window title

if(stream
-1R

make

NULL
unsigned short
PATH

/dev/null

exit()
Ctrl-Alt-Delete
Username
Enter

login:

stdin

parm1
Navigator

Options

== NULL)

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

'S Notes point out something important or useful.

/. CAUTION: Cautions tell you about commands or procedures that may have unwanted or

¢ = % undesirable side effects.

/= WARNING: Warnings tell you about commands or procedures that could be dangerous to your

L AN
r Ay .
{ "" 3 files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those
pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qgnx.com).
You'll find a wide range of support options, including community forums.

8 Copyright © 2015, QNX Software Systems Limited

http://www.qnx.com

Chapter 1
Packaging, Installing, and Launching Apps

Before you can install an app on your target, you must first package it.

Packaging is the process of creating a compressed archive of all the files that comprise your app. The
tools you use will differ, depending on the type of app you're packaging.

For any type of app, you need to specify:

e the app's resources
e the services the app needs to access on the target

You then run the approprate packaging tool, which produces the final BlackBerry ARchive (BAR) file
(with a .bar extension) that you'll install on your target. Note that the format of a BAR file is essentially
RAR, so you can use an extractor tool such as WinRAR to view the contents of any .bar file.

When your app is packaged as a .bar file, you copy it to your target, where you can install and launch
it.

Copyright © 2015, QNX Software Systems Limited 9

Packaging, Installing, and Launching Apps

Packaging a native C/C++ app for installation

10

To create a .bar file for a native C/C++ app, you run the blackberry-nativepackager utility.

The blackberry-nativepackager utility creates a .bar file that includes all of your app's resources
as well as the following key components:

e an app descriptor file (bar-descriptor.xml), which specifies capabilities in <action> elements.
You should list the assets required by your app in this file. See “Sample bar-descriptor.xml
files (p. 15)" as well as the HTML5 Developer's Guide and the Qt Developer's Guide.

e alaunch icon (icon.png)
To package your app:
1. Open a command prompt.

2. Navigate to the directory where your native project is stored.

3. Run the following command:
blackberry-nativepackager -package -devMode bar-package [app-desc files]

where:

e bar-package is the path to the location where you want the BAR file to be created
e app-desc is the path to the app descriptor file (bar-descriptor.xml)

e files is a sequence of paths to files or directories to include in the package
These paths can be absolute or relative to a current directory.

You run blackberry-nativepackager in developer mode because you don't need to sign your
app. For information on other parameters, run the command:

blackberry-nativepackager -help

The .bar file is created at the path you specified. You can now install and run the app on the target.

Copyright © 2015, QNX Software Systems Limited

Packaging, Installing, and Launching Apps

Installing a packaged app on the target

After you've packaged your app (by running the packager to create a .bar file), you're ready to install
the app on your target system.

To install your app:

1. Copy your app's .bar file from your host machine to your target.

You could use FTP or a tool such as WinSCP (Windows) for copying files. Or you could use a USB
stick, which should appear on your target as a directory called /fs/usbO/.

2. From a terminal window, execute the bar-install script:
/scripts/bar-install my_app.bar

Each installed app resides in its own directory under /apps on your system. The directory name
looks something like this:

package_name . testDev_ system_generated_suffix/

where system_generated_suffix is a combination of the last few characters of the package name
and a generated identifier.

For example, here's the directory name for the default HTML5 app created with the package name
com.example.hello:

com.example.hello.testDev _ample hellodf4765al/

You can now launch the app.

Copyright © 2015, QNX Software Systems Limited 11

http://winscp.net/eng/docs/introduction

Packaging, Installing, and Launching Apps

Launching an app on the target

12

After you've installed your app's .bar file, you can launch your app.
If you don't have an HMI running on your target, you can still run your app from the command line.
To launch your app:
e Run the launch script from the command line to start your app:
launch project_name
For example, launch BrowserLite.
The launch script creates all the files and folders the app needs in the application sandbox, and then

runs the app on the target. You can see the files in the sandbox by looking at the app data directory
located at /accounts/1000/appdata on your target image.

To launch the app, the Application Launcher service echoes a command containing the app's Application
ID to the appropriate Persistent Publish/Subscriber (PPS) object:

echo "msg::start\ndat:: application_id\nid: : id_number" >

/pps/services/launcher/control

Here, application_id is the app's name in the /apps directory and id_number is an arbitary string that
identifies the message. For example, if the BrowserLite sample application was started, the
application_id would be BrowserLite.testDev_BrowserLite353323d6 (you can determine
this from the /apps folder) and an arbitary value identifying the message such as 1234 would be also
sent. The full message would be:

echo "msg::start\ndat::BrowserLite.testDev BrowserLite353323d6\n
id::1234" > /pps/services/launcher/control

For information about Application Launcher and the PPS control object it uses, see launcher in the
System Services Reference and /pps/services/launcher/control in the PPS Objects Reference.

Copyright © 2015, QNX Software Systems Limited

Packaging, Installing, and Launching Apps

Stopping all apps on the target

For testing purposes or if your system doesn't have an HMI, you can stop applications from the command

line using the stop-apps script.

Under normal circumstances, however, your HMI stops applications by issuing a stop message to PPS
(see “Stopping an application (p. 24)").

To stop all running apps on your system:
e Run the following from the command line:

stop—-apps
The stop-apps script echoes this stop command to the PPS object:

"msg::stop\ndat::" > /pps/services/launcher/control

The Application Launcher service shuts down all the running apps.

For information about Application Launcher and the PPS control object it uses, see launcher in the
System Services Reference and /pps/services/launcher/control in the PPS Objects Reference.

Copyright © 2015, QNX Software Systems Limited 13

Packaging, Installing, and Launching Apps

Uninstalling Apps

You can use the bar-uninstall script to uninstall apps.

To uninstall an app:

e Run the following from the command line:
bar-uninstall my_app_id

where my_app_id is the ID of your app as given in the <id> element in your bar-descriptor.xml

file (e.g., <id>com.example.hello</id>).

You can run bar-uninstall without any arguments to see a list of all apps currently

™
L

E installed on your system.

14 Copyright © 2015, QNX Software Systems Limited

Packaging, Installing, and Launching Apps

Sample bar-descriptor.xml files

Here are the bar-descriptor.xml files from several apps. For information about the elements in the files,
see The application descriptor file DTD in the BlackBerry 10 documentation.

HelloWorld: an HTMLS app

<?xml version='1l.0' encoding='utf-8'7?>
<gnx>
<id>helloworld</id>
<versionNumber>1.0.0</versionNumber>
<author>QNX</author>
<asset entry="true" type="gnx/elf">wwe</asset>
<asset>README. txt</asset>
<asset>config.xml</asset>
<asset>cordova.js</asset>
<asset>default-icon.png</asset>
<asset>index.html</asset>
<asset>wwe</asset>
<asset>chrome/frameworkModules.js</asset>
<asset>chrome/index.html</asset>
<asset>chrome/require.js</asset>
<asset>chrome/ui.html</asset>
<asset>chrome/lib/exception.js</asset>
<asset>chrome/lib/utils.js</asset>
<asset>plugins/jnext/auth.txt</asset>
<entryPointType>QOnx/WebKit</entryPointType>
<cascadesTheme>default</cascadesTheme>
<initialWindow>
<systemChrome>none</systemChrome>
<transparent>true</transparent>
<autoOrients>true</autoOrients>
</initialWindow>
<env value="2.0.0" var="WEBWORKS VERSION" />
<env value="slog2" var="CONSOLE MODE" />
<permission system="true">run native</permission>
<permission system="false">access internet</permission>
<permission>access_ shared</permission>
<permission>access internet</permission>
<permission>run native</permission>
<name>HelloWorld</name>
<description>Cordova Hello World</description>
<icon>

</icon>

<splashScreens />

Copyright © 2015, QNX Software Systems Limited 15

http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/r_blackberry_tablet_dtd_intro.html

Packaging, Installing, and Launching Apps

<buildId>0</buildId>

</gnx>

RearviewCamera: a native app

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<gnx xmlns="http://www.qgnx.com/schemas/application/1.0">

<id>rearview camera</id>

<name>Camera</name>

<versionNumber>1.0.0</versionNumber>

<buildId>1</buildId>

<description>Camera</description>

<author>QNX</author>

<initialWindow>
<autoOrients>true</autoOrients>
<systemChrome>none</systemChrome>
<transparent>false</transparent>

</initialWindow>

<category>vehicle</category>

<configuration name="arm">

<asset path="display black" entry="true"
nto/arm/o.le.v7/display black

</asset>

</configuration>

<configuration name="x86">

<asset path="display black" entry="true"
nto/x86/o0/display black

</asset>

</configuration>

<icon>


</icon>

type="Qnx/E1f">

type="Qnx/E1f">

<permission system="true">run native</permission>

<permission system="true">configure system</permission>

</gnx>

IPCamera: a QT app

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<gnx xmlns="http://www.gnx.com/schemas/application/1.0">

16

<id>com.example.ipcamera</id>

<name>IP Camera</name>
<versionNumber>1.0.0</versionNumber>
<description>DESCRIPTION</description>
<initialWindow>

<systemChrome>none</systemChrome>

Copyright © 2015, QNX Software Systems Limited

Packaging, Installing, and Launching Apps

<transparent>false</transparent>
<autoOrients>true</autoOrients>
<aspectRatio>landscape</aspectRatio>
</initialWindow>
<publisher>PUBLISHER</publisher>
<copyright>COPYRIGHT</copyright>
<env var="QQONX PHYSICAL SCREEN SIZE" value="150,90"/>
<icon></icon>
<action system="true">run native</action>
<permission>access protected media</permission>
<permission>access_ shared</permission>
<!-- should point to the project binary, path can be relative -->
<asset entry="true" path="IPCamera" type="Qnx/El1f">IPCamera</asset>
</gnx>

Copyright © 2015, QNX Software Systems Limited 17

Chapter 2
Creating Your Own Application Window Manager

You can create your own application window manager to support an HMI built with a standard Ul
technology such as HTML5, Qt, or OpenGL ES.

What is an application window manager?

An application window manager is responsible for managing:

e interactions with the HMI
e the placement and appearance of application windows
e the starting and stopping of applications

Your window manager can support an HMI that was developed using any one of the industry-standard
Ul technologies (e.g., HTML5, Qt, OpenGL ES).

HMI

Application Window Manager

|
o M .

driver

Figure 1: Overview of how window manager interacts with other components to launch an application

Copyright © 2015, QNX Software Systems Limited 19

Creating Your Own Application Window Manager

Application management

Managing the application life cycle (starting and stopping applications) is achieved by communicating
with the launcher service through the Persistent Publish/Subscribe (PPS) service.

Your window manager implementation must, at a minimum, do the following:

e have access to the list of applications to be managed
e publish to the /pps/services/launcher/control object
e subscribe to the /pps/services/launcher/control object

e handle state changes appropriately

Your window manager needs to access the application ID and any data associated with each application.
This application information is required to interact with the PPS control object for starting and stopping
applications.

Application information can be retrieved from various means and depends on the design of your window
manager. You can use anything from a simple configuration file to setting up your own PPS objects to
track application information.

The examples in this guide illustrate the system calls required to open the launcher control
e object, read PPS messages to react to the object's creation or deletion or to changes in its
attributes, and write commands to start and stop applications.

"
-

For information about Application Launcher and the PPS control object it uses, see 1auncher
in the System Services Reference and Ipps/services/launcher/control in the PPS Objects
Reference.

Interacting with the /pps/services/launcher/control object

Your window manager interacts with the /pps/services/launcher/control object to start and stop
applications.

To manage the interactions with this PPS object, you need to:

1. Create a thread to handle object interactions.
2. Open the object for publishing and subscribing.

3. Handle messages.

Create a thread to handle object interactions
You can create a thread in your window manager to manage your interactions with the PPS object:
window manager t window manager;

memset (&window manager, 0, sizeof (window manager t));

window manager t *winmgr = &window manager;
int pps_tid; /* PPS thread ID */

void *pps_ thread(void *arg);
if (rc = pthread create(NULL, NULL, pps_ thread, (void*)win mgr) < 0)

20 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

{ /* error-handling code goes here */ }

pthread setname np(screen tid = pthread self(), "pps");

Open the object for publishing and subscribing

Simply call open() with 0_RDWR from your PPS thread to publish and subscribe to the
Ipps/services/launcher/control object.

Make sure to open the object in delta mode and wait mode. With delta mode, a subscriber receives
only the changes to the object attributes. The wait mode means that any read() calls to the object
block until the object changes or a delta appears.

int pps fd;
pps_fd = open("/pps/services/launcher/control?wait,delta”, O RDWR);

Handle messages

In your window manager's PPS thread, parse the PPS message received and then handle each message
type accordingly. Refer to “PPS API reference” in the Persistent Publish/Subscribe Developer's Guide
for PPS API constants and functions.

Here's an example of how you could implement handling PPS messages:

char buf[1024];
int nread = -1;
while (1) {

while (nread == -1) {

nread = read(fd, buf, sizeof (buf)-1);
if (nread > 1) {
buf [nread] = '\0';
/* Declare variables to store PPS API attribute and status*/
pps_attrib t info;
pps_status_t rc;
/* Call PPS API function ppsparse() to parse
* the message received
*/
while ((rc = ppsparse (&buf, NULL, NULL, &info, 0)) != PPS END) ({
/* Handle each PPS message type accordingly */
switch (rc) {
case PPS OBJECT CREATED:
win mgr->objname = info.obj name;
win mgr->ptype = PPS EVENT OBJECT CREATED;

break;

case PPS OBJECT TRUNCATED:
case PPS OBJECT DELETED:

Copyright © 2015, QNX Software Systems Limited 21

Creating Your Own Application Window Manager

nav->objname = info.obj name;
nav->ptype = PPS_EVENT_OBJECT_DELETED;

break;

case PPS OBJECT:

if (info.obj name[0] != '@") {
exit;

}

win mgr->objname = info.obj name;

win mgr->ptype = PPS_EVENT OBJECT CHANGED;

break;

case PPS ATTRIBUTE DELETED: {

--info.attr name;

/* Handle when there is an attributed deleted */
int err = pps parse attr(nav, &info);

if (err != EOK)

return;

case PPS ATTRIBUTE: ({
/* Handle when there is an attributed updated */
int err = pps parse attr(nav, &info);
if (err != EOK)
return;
break;

}

case PPS ERROR:
default:
SLOG_WARNING ("We got a parsing error.");

return;

/* Update any necessary information such as appending
* or deleting from your application list based on the
* PPS message received and parsed. In this case, we
* are calling a helper function, launcher pps() to
* perform any updates to the window manager.

*/

launcher pps(win mgr);

22 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

Starting an application

To start an application from your window manager, you need to issue a write() call to send a start
command to the PPS launcher control object.

Publishing a start command to the PPS object

After opening the /pps/services/launcher/control object for publishing, call write() to modify the object's
attributes. Use the appropriate message format with the start command.

#define CMD_START "start"

int msgsize;

char msgbuf[4096];

int ret = 0;

char *id = strdup("101");

char *data = strdup("HelloWebWorks.testDev lloWebWorkslfa80£f60");

msgsize = snprintf (msgbuf,
sizeof (msgbuf),
"msg::%s\ndat::%s\nid::%s", CMD START, data, id);

ret = write(pps_ fd, msgbuf, (unsigned)msgsize);

The figure below shows the basic steps for launching an application:

1. The device driver writes an event letting Screen know that someone has tried to launch an

application.

2. Window manager learns about the event through the Screen API.

3. Window manager publishes to a PPS object so that interested components can know about the
request to launch an application.

4. The launcher reads the PPS object and begins launch procedures.

5. The launcher asks the authorization manager to check permissions to launch the application.

6. When it receives authorization, the launcher completes the application launch.

7. The application uses the Screen API to tell Screen that it is present and ready to be displayed.

Copyright © 2015, QNX Software Systems Limited 23

Creating Your Own Application Window Manager

HMI

Application Window Manager

Application
/ ﬁ
6. Launch 7. Display
A

5. Get authorization 1. Input event

3. Startapp =

2

A
2. Input event

4. Launch

5
B

Input device
driver

Figure 2: Step-by-step view of how window manager launches an application

For information about Application Launcher and the PPS control object it uses, see launcher in the
System Services Reference and /pps/services/launcher/control in the PPS Objects Reference.

Stopping an application

To stop an application from your window manager, you need to issue a write() call to send a stop
command to the PPS launcher control object.

Publish stop command to the PPS object

After opening the /pps/services/launcher/control object for publishing, call write() to modify the object's
attributes. Use the appropriate message format with the stop command.

#define CMD_START "stop"

int msgsize;

char msgbuf[4096];

int ret = 0;

char *id = strdup("101");

char *data = strdup("HelloWebWorks.testDev lloWebWorkslfa80£60");

msgsize = snprintf (msgbuf,
sizeof (msgbuf),
"msg::%s\ndat::%$s\nid::%$s", CMD STOP, data, id);

ret = write(pps_fd, msgbuf, (unsigned)msgsize);

For information about Application Launcher and the PPS control object it uses, see launcher in the
System Services Reference and /pps/services/launcher/control in the PPS Objects Reference.

24 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

Window management

Your window manager is responsible for the placement and appearance of application windows.

Managing application windows is achieved through Screen. Through Screen API functions, your window
manager deals with the application windows' z-order, transparency, positioning on the physical display,
and scaling. For more information on Screen, see the Screen Graphics Subsystem Developer's Guide.

Once started, applications communicate directly with Screen from their own context. Applications
manage their own windows through the Screen API.

Set up Screen

Window management requires a connection to Screen, configuration of a window, and creation of a
window buffer.

Before you can manage application windows, you need to set up your window manager by doing the
following:

Connect to Screen.

Create a window for your window manager.

Set the properties for your window.

Create a window buffer for your window.

o R~ wbh =

Post your window and flush your context.

Connect to Screen

The first step is to establish a connection between your window manager and the underlying windowing
system, Screen. To set up this connection, you need to create a Screen context.

There are different context types. A standard application would use SCREEN_APPLICATION_CONTEXT.
Because you're writing a window manager, you need a context type that lets you modify all the windows
in the system. Specifically, you need to use SCREEN_WINDOW_MANAGER_CONTEXT; this context
type enables the receipt of events when application windows are created and destroyed and when
applications change their window properties.

Note that root permission is required to use the SCREEN_WINDOW_MANAGER_CONTEXT context
type.

int rc = 0;
screen context t screen ctx; /* connection to Screen */

rc = screen create context (&screen ctx, SCREEN WINDOW MANAGER CONTEXT) ;

Create a window for your window manager

Without a window for your window manager, you can still receive SCREEN_EVENT_CREATE and
SCREEN_EVENT_CLOSE window manager events, but you can't receive any input events.

You need to create a window for your window manager so that you can receive and handle these input
events:

e SCREEN_EVENT_MTOUCH_TOUCH

Copyright © 2015, QNX Software Systems Limited 25

Creating Your Own Application Window Manager

e SCREEN_EVENT_MTOUCH_MOVE

e SCREEN_EVENT_MTOUCH_RELEASE
e SCREEN_EVENT_POINTER

e SCREEN_EVENT_KEYBOARD

screen window t screen win; /* native handle for our window */

rc = screen create window (&screen win, screen ctx);

Set the properties for your window

Although many window properties are available, you don't need to set them all because most have
defaults that are appropriate. For a window manager, however, you need to set some particular window
properties:

SCREEN_PROPERTY_USAGE

The intended usage for the buffers associated with the window. You need to ensure that
these buffers can be written to, which means you need to set the SCREEN_USAGE_WRITE
flag in the bitfield for this property.

SCREEN_PROPERTY_SIZE

The width and height, in pixels, of the window. By default, windows are fullscreen. You may
not want your window manager's window to be fullscreen; for example, if you still want to
see this window when you run multiple applications at the same time.

SCREEN_PROPERTY_POSITION

The window's display coordinates. You want to set this so that the position of your window
manager's window isn't obscuring an application window's area of interest.

SCREEN_PROPERTY_ZORDER

This property indicates the level from the bottom, which is used to order window groups
among each other. Your window manager needs to examine the z-order settings of its own
window and of all application windows so that it can display them in the correct order.

int val = 0;
val = SCREEN USAGE WRITE;

rc = screen_ set window property iv(screen win, SCREEN PROPERTY USAGE, &val);

int size[2] = { 64, 64 }; /* size of the window on screen */

rc = screen set window property iv(screen win, SCREEN PROPERTY SIZE, size);

int pos[2] = { 0, 0 }; /* position of the window on screen */

rc = screen_set window property iv(screen win, SCREEN PROPERTY POSITION, pos);

int zorder = 0;

rc = screen_ set window property iv(screen win, SCREEN PROPERTY ZORDER, &zorder);

26 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

Create a window buffer for your window
You need at least one buffer to hold the contents of your window so that your window will be visible.

In the simplest case, you can fill your window with a solid color so that you can see the window. Before
you can do this, you'll need to query some properties of the window buffer.

SCREEN_PROPERTY_RENDER_BUFFERS

The pointer to the window buffer available for rendering. It's best to first query
SCREEN_PROPERTY_RENDER_BUFFER_COUNT to determine the number of window
buffers you have. But in this case, there's only one, so you can simply query
SCREEN_PROPERTY_RENDER_BUFFERS.

SCREEN_PROPERTY_POINTER

The pointer that can be used to read from and/or write to the window buffer. When you set
the SCREEN_PROPERTY_USAGE to include SCREEN_USAGE_WRITE, you enable write
access to this buffer. Therefore, this pointer will reference memory that you can write to.

SCREEN_PROPERTY_STRIDE

The size, in bytes, of each line of the window buffer. This value is the number of bytes
between the same pixel on adjacent rows.

For the sake of simplicity, you can just fill the window buffer with a solid color pattern. To do this, you
can use memset():

screen buffer t screen buf; /* renderable buffer for the window */
rc = screen create window buffers(screen win, 1);
rc = screen get window property pv(screen win,

SCREEN PROPERTY RENDER BUFFERS,

(void **)&screen buf);
rc = screen get buffer property pv(screen buf, SCREEN PROPERTY POINTER, é&pointer);
int stride; /* size of each window line in bytes */

memset (pointer, 0x80, stride * sizel[l]);

Post your window and flush your context

To make the content rendered on your window visible, you need to post your changes to Screen. Posting
to Screen indicates that you have completed drawing to your render buffer and you wish to have the
changes made visible. When you post, you need to specify which area of your buffer has changed so
that Screen will redraw only the parts of the framebuffer that need updating. When posting your first
frame, you must post the entire buffer.

To ensure that any delayed Screen commands are processed, flush the command queue of your context
after you post:

int rect[4] = { 0, 0, size[0], size[l] };
rc = screen post window(screen win, screen buf, 1, rect, 0);

rc = screen flush context (screen ctx, SCREEN WAIT IDLE);

Copyright © 2015, QNX Software Systems Limited 27

Creating Your Own Application Window Manager

Handle Screen events

The window manager needs to handle any events of interest.

Events that require action by your window manager include the creation and destruction of application
windows as well as some input events.

To set up your window manager to handle Screen events, you need to:

1. Create a thread in your window manager.
2. Create a Screen event.

3. Handle any Screen event of interest to your window manager.

Create a thread in your window manager

You can create a thread in your window manager to handle Screen events.

window manager t window manager;
memset (&window manager, 0, sizeof (window manager t));

window manager t *winmgr = &window manager;

int screen_ tid; /* Screen thread ID */
void *screen thread(void *arg);

if (rc = pthread create(NULL, NULL, pps_thread, (void*)win mgr) < 0)
{ /* error-handling code goes here */ }

pthread setname np(screen tid = pthread self(), "screen monitor");

Create a Screen event

Create a Screen event to store the event. After retrieving the event from the context's event queue, you
can use Screen API functions to query the event's properties to determine whether additional action

is required.
screen_event t screen ev; /* handle used to retrieve events from our queue */
rc = screen_create_event (&screen_ev);

Handle any Screen event of interest to your window manager

Create an event-handling routine within your thread. This routine will retrieve the most recent event
from the queue and then extract data from the event.

Use the Screen API function screen_get_event() to retrieve the event. Then, use the
screen_get_event_property_iv() function to retrieve the event type, by querying the
SCREEN_PROPERTY_TYPE property. Handle the events of interest to your window manager.

screen window t win; /* stores a window contained in an event */
int val; /* used for simple property queries */
screen display t *displays, disp; /* used for display queries */

int display count = 0, port; /* used for display queries */

int pair([2]; /* used to query pos, size */

28 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

void *ptr; /* used to query user handles */

char str[128]; /* used to query string properties */
int size[2] = { 64, 64 }; /* size of the window on screen */
while (!screen get event (screen ctx, screen ev, ~0L)) {

screen get event property iv(screen ev, SCREEN PROPERTY TYPE, &val);
switch (val) {
case SCREEN EVENT DISPLAY:
if (screen get event property pv(screen ev,
SCREEN PROPERTY DISPLAY,
(void *)&disp) == 0) {
} else {
break;
}
screen get display property iv(disp, SCREEN PROPERTY TYPE, &val);
switch (val) {
case SCREEN DISPLAY TYPE HDMI:
screen get display property iv(disp, SCREEN PROPERTY ATTACHED, &val);
screen get display property iv(disp, SCREEN PROPERTY ID, &port);
break;
default:
break;
}
break;
case SCREEN EVENT IDLE:
screen get event property iv(screen ev, SCREEN PROPERTY IDLE STATE, &val);
screen get context property iv(screen ctx, SCREEN PROPERTY IDLE STATE, é&val);
screen get context property iv(screen ctx,
SCREEN PROPERTY DISPLAY COUNT,
&display count);
displays = malloc(display count * sizeof (screen display t));
screen get context property pv(screen ctx,
SCREEN_ PROPERTY DISPLAYS,
(void *)displays);
for (int i=0; i<display count; i++) {
screen get display property iv(displays[i], SCREEN PROPERTY KEEP AWAKES, &val);
}
free (displays);
break;
case SCREEN EVENT CREATE:
screen get event property pv(screen ev, SCREEN PROPERTY WINDOW, (void **)&win);
screen get window property iv(win, SCREEN PROPERTY OWNER PID, &val);
screen get window property pv(win, SCREEN PROPERTY USER HANDLE, &ptr);
break;
case SCREEN EVENT PROPERTY:
screen get event property pv(screen ev, SCREEN PROPERTY WINDOW, (void **)&win);
screen get event property iv(screen ev, SCREEN PROPERTY NAME, &val);

Copyright © 2015, QNX Software Systems Limited 29

Creating Your Own Application Window Manager

30

break;

case SCREEN EVENT CLOSE:

screen get event property pv(screen ev,

SCREEN_ PROPERTY WINDOW, (void **)&win);

screen get window property pv(win, SCREEN PROPERTY USER HANDLE, &ptr);

screen destroy window (win);

break;

case SCREEN EVENT POST:

screen get event property pv(screen ev,

SCREEN_ PROPERTY WINDOW, (void **)&win);

screen get window property pv(win, SCREEN PROPERTY USER HANDLE, &ptr);

set window properties (win);
screen flush context (screen ctx, 0);

break;

case SCREEN EVENT INPUT:
case SCREEN EVENT JOG:

break;

case SCREEN EVENT POINTER:

screen get event property iv(screen ev,
screen get event property iv(screen ev,
screen get event property iv(screen ev,
if (val) {

SCREEN PROPERTY DEVICE INDEX, &val);
SCREEN_ PROPERTY POSITION, pair);
SCREEN PROPERTY BUTTONS, &val);

if (pair[0] >= size[0] - exit area size &&
pair[0] < size[0] &&
pair[l] >= 0 &&
pair[l] < exit area size) ({
goto end;
}
}
break;

case SCREEN EVENT KEYBOARD:

screen get event property iv(screen ev,
screen get event property iv(screen ev,
screen get event property iv(screen ev,
screen get event property iv(screen ev,
screen get event property iv(screen ev,
screen get event property iv(screen ev,
switch (val) {
case KEYCODE ESCAPE:
goto end;
}

break;

case SCREEN EVENT MTOUCH TOUCH:
case SCREEN EVENT MTOUCH MOVE:
case SCREEN EVENT MTOUCH RELEASE:

screen get event property pv(screen ev,

screen get event property iv(screen ev,

screen get event property iv(screen ev,
(

screen get event property iv(screen ev,

SCREEN PROPERTY DEVICE INDEX, &val);
SCREEN_PROPERTY KEY CAP, &val);
SCREEN_PROPERTY KEY FLAGS, &val);
SCREEN PROPERTY KEY MODIFIERS, &val);
SCREEN PROPERTY KEY SCAN, &val);
SCREEN PROPERTY KEY SYM, &val);

SCREEN PROPERTY WINDOW, (void **)&win);
SCREEN PROPERTY TOUCH ID, &val);
SCREEN PROPERTY SEQUENCE ID, &val);
SCREEN PROPERTY POSITION, pair);

Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

screen get event property iv(screen ev, SCREEN PROPERTY SIZE, pair);
screen get event property iv(screen ev, SCREEN PROPERTY SOURCE POSITION, pair):;

(
(
screen get event property iv(screen ev, SCREEN PROPERTY SOURCE SIZE, pair);
screen get event property iv(screen ev, SCREEN PROPERTY TOUCH ORIENTATION, &val);
screen get event property iv(screen ev, SCREEN PROPERTY TOUCH PRESSURE, &val);
break;
case SCREEN_EVENT_USER:

break;

O See the Screen Graphics Subsystem Developer's Guide for a complete list of all Screen event
types.

Copyright © 2015, QNX Software Systems Limited 31

Creating Your Own Application Window Manager

An example of a simple application window manager

32

This example shows some essential application window manager functionality.

The following reference code implements a simple application window manager. There are several ways
of designing a window manager; this example shows only the essential initialization and handling
required. Your window manager implementation will likely involve more complicated handling of PPS
and Screen events.

Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

struct.h

Constants and function definitions for a simple window manager

SQONXLicenseC:
* Copyright 2012, QONX Software Systems Limited. All Rights Reserved.

* This software is QNX Confidential Information subject to

* confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
* IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
* WRITING.

* You must obtain a written license from and pay applicable license

* fees to QONX Software Systems Limited before you may reproduce, modify
* or distribute this software, or any work that includes all or part

* of this software. For more information visit

* http://licensing.gnx.com or email licensing@gnx.com.

* This file may contain contributions from others. Please review
* this entire file for other proprietary rights or license notices,
* as well as the QNX Development Suite License Guide at

* http://licensing.gnx.com/license-guide/ for other information.

* S

*/

#ifndef STRUCT H_
#define STRUCT H

#include <errno.h>

#include <ctype.h> /* Header file for isdigit */
#include <stdio.h> /* Header file for fprintf */
#include <stdlib.h> /* Header file for EXIT FAILURE, EXIT SUCCESS, atoi */
#include <string.h> /* Header file for strncmp */

#include <sys/keycodes.h> /* Header file for KEYCODE ESCAPE */

#include <time.h> /* Header file for clock gettime, timespec2nsec */
#include <screen/screen.h> /* Header file for all screen API calls */
#include <pthread.h>

#include <fcntl.h>

#include <sys/pps.h>

#include <sys/slog.h>
#include <sys/slogcodes.h>

Copyright © 2015, QNX Software Systems Limited 33

Creating Your Own Application Window Manager

#define WINMGR SLOG_CODE _SLOG_SETCODE (SLOGC_ TEST,104)

#define SLOG WARNING(...) slogf(WINMGR SLOG CODE, SLOG WARNING, _ VA ARGS)
#define SLOG ERROR(...) slogf (WINMGR SLOG CODE, SLOG ERROR, _ VA ARGS)
#define SLOG NOTICE(...) slogf(WINMGR SLOG CODE, SLOG NOTICE, _ VA ARGS)
#define KILO(n) ((n)*1024)

#define MEG(n) ((n)*1024%1024)

#define MAX REQSIZE KILO (32)
#define MAX RESSIZE KILO (1)
#define MAX ATTRS KILO (1)

// launcher commands

#define CMD START "start"
#define CMD_ DEBUG "debug"
#define CMD_STOP "stop"
#define CMD FREEZE "freeze"
#define CMD_THAW "thaw"
#define CMD LOWMEM "lowmem"
#define CMD_STOPPED "stopped"
#define CMD ACTIVE "active"
#define CMD QUERY "query"
#define CMD HIDE "hide"
enum {

WINMGR UPDATE = (1 << 0),

WINMGR TERMINATE = (1 << 1),

b

typedef enum {
PPS_EVENT OBJECT UNKNOWN = 0x00,

PPS_EVENT_OBJECT CHANGED = 0x01,
PPS_EVENT OBJECT CREATED = 0x02,
PPS EVENT OBJECT DELETED = 0x04,

PPS EVENT ALL = 0x7,
PPS FLAG CREDENTIALS = 1 << 15
} pps_event type;

typedef struct {

char *id;

char *pid;

char *data;
} app_t;

typedef struct
{

char *name;

34 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

char *encoding;
char *value;

} pps_attr t;

typedef struct {

int state;

int pps_fd;
app_t car_app;
app_t weather app;
int verbose;

int background;

// pps related

int numattrs;

char *objname;
pps_event type ptype;

pps_attr t attrs[MAX ATTRS];
int pps_tid;

// screen related

screen context t screen ctx; /* connection to screen windowing system */
screen window t screen win; /* native handle for our window */

screen event t screen_ev; /* handle used to pop events from our queue */
int screen_tid;

} window manager t;

// pps.c

extern void* pps thread(void* arg);

int pps write(int pps fd, const char *msgbuf, int msgsize);
int pps is open(int pps_ fd);

char* pps lookup(window manager t *winmgr, char *name);

pps_attr t* pps lookup attr(window manager t *winmgr, char *name);

// launcher.c
int launcher pps(window manager t *winmgr);

void launcher send(window manager t *winmgr, char *cmd, char *data, char *id);

// core.c
void core app started(window manager t *winmgr, char *id, char *data, int error, char *errstr);
void core app stopped(window manager t *winmgr, char *data);

void core lowmem(window manager t *winmgr, char *data);
// screen.c
int screen init(window manager t *winmgr, int argc, char **argv);

void* screen thread(void *arg);

#endif /* STRUCT H */

Copyright © 2015, QNX Software Systems Limited 35

Creating Your Own Application Window Manager

main.c

The main application for a simple window manager

/*
* SQONXLicenseC:
* Copyright 2012, ONX Software Systems Limited. All Rights Reserved.

* This software is QNX Confidential Information subject to

* confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
* IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
* WRITING.

* You must obtain a written license from and pay applicable license

* fees to QONX Software Systems Limited before you may reproduce, modify
* or distribute this software, or any work that includes all or part

* of this software. For more information visit

* http://licensing.gnx.com or email licensing@gnx.com.

* This file may contain contributions from others. Please review
* this entire file for other proprietary rights or license notices,
* as well as the QNX Development Suite License Guide at

* http://licensing.gnx.com/license-guide/ for other information.

* 3

*/

#include "struct.h"

static void main setup default (window manager t *winmgr)
{

winmgr->background = 1;

winmgr->pps fd = -1;

winmgr->state = WINMGR UPDATE;

winmgr->verbose = 1;

winmgr->car app.id = strdup("100");

winmgr->car app.data = strdup("carcontrol.testDev carcontrol 21522f09,\
WIDTH=800,HEIGHT=395") ;

winmgr->weather app.id = strdup("101");

winmgr->weather app.data = strdup("sys.browser.gYABgJYFHAzbeFMPCCPpYWBtHAmO, \

WIDTH=800, HEIGHT=395") ;

winmgr->screen tid = -1;

36 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

int main(int argc, char **argv)
{

int rc;

window manager t window manager;
memset (&window manager, 0, sizeof (window manager t));
window manager t *winmgr = &window manager;

main setup default (winmgr) ;

rc = screen init(winmgr, argc, argv);
if (rc !'= EOK) {
exit (EXIT FAILURE) ;

// create a pps thread and here
if (pthread create (NULL, NULL, pps_thread, (void*)winmgr) < 0) {

SLOG_ERROR ("Failed to create a pps thread (%d:%s)", errno, strerror (errno)):;

if (pthread create(NULL, NULL, screen thread, (void*)winmgr) < 0) {

SLOG_ERROR ("Failed to create a screen thread (%d:%s)", errno, strerror(errno));

// launcher apps
while (winmgr->pps fd == -1) {
sleep(l);
}
launcher send(winmgr, CMD START, winmgr->car app.data, winmgr->car app.id);

launcher send(winmgr, CMD START, winmgr->weather app.data, winmgr->weather app.id);

sleep(30);

launcher_send(winmgr, CMD _STOP, "", "");
sleep(5);

// create a self detached thread
pthread cancel (winmgr->pps_ tid);

pthread cancel (winmgr->screen tid);

return EXIT SUCCESS;

Copyright © 2015, QNX Software Systems Limited 37

Creating Your Own Application Window Manager

screen.cCc

Window management of a simple window manager

SQONXLicenseC:
Copyright 2012, ONX Software Systems Limited. All Rights Reserved.

This software is QNX Confidential Information subject to
confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
IS PROHIBITED UNLESS AUTHORIZED BY QONX SOFTWARE SYSTEMS IN
WRITING.

You must obtain a written license from and pay applicable license
fees to QONX Software Systems Limited before you may reproduce, modify
or distribute this software, or any work that includes all or part

of this software. For more information visit

http://licensing.qnx.com or email licensing@gnx.com.

This file may contain contributions from others. Please review
this entire file for other proprietary rights or license notices,
as well as the QNX Development Suite License Guide at

http://licensing.qnx.com/license-guide/ for other information.

* 8

*/

#include "struct.h"

static void set window properties(screen window t win)

{

38

static int size[2] = {400, 240};

static int pos([2] = {0, 0};

static int order = 100;

// if it is the video clip, set it to a fixed position

static int 1 = 0;

int r = i%4;

if (r == 0) {
pos[0] = 0;
pos[1] = 0;

} else if (r == 1) {
pos[0] = 400;
pos[l] = 0;

} else if (r == 2) {
pos[0] = 0;

pos[1l] = 240;

Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

//

int

} else if (r == 3) {
pos[0] = 400;
pos[1l] = 240;

screen_ set window property iv(win, SCREEN PROPERTY SIZE, size);
screen set window property iv(win, SCREEN PROPERTY POSITION, pos);
screen set window property iv(win, SCREEN PROPERTY ZORDER, &order

) r
printf ("application index: %d\tpos: %d,%d\n", r, pos[0], pos[l]);
i++;

screen init(window manager t *winmgr, int argc, char **argv)

/**
** This is the size for an invisible exit button. We choose a value that's
** big enough to be useable with touchscreens and pointer devices.
**/

screen context t screen ctx; /* connection to screen windowing system */
screen window t screen win; /* native handle for our window */

screen buffer t screen buf; /* renderable buffers for the window */

screen event t screen ev; /* handle used to pop events from our queue */
int size[2] = { 64, 64 }; /* size of the window on screen */

int pos[2] = { 0, 0 }; /* position of the window on screen */

int val; /* used for simple property queries */

const char *tok; /* used to process command line arguments */
int rval = EXIT_ FAILURE; /* application exits with value stored here */
int rc; /* store return value from functions */

int 1i; /* loop/frame counter */

int stride; /* size of each window line in bytes */

void *pointer; /* virtual address of the window buffer */

int zorder = 0;

char *group name = strdup ("default-group");

Jx*

** We start by processing the command line arguments. The first argument
** is skipped because it contains the name of the program. Arguments
** follow the syntax - (option)=(value).

**/

for (i = 1; 1 < argc; i++) {

if (strncmp(argv[i], "-size=", strlen("-size=")) == 0) {
/**
** The syntax of the size option is -size=(width)x (height) .
**/
tok = argv[i] + strlen("-size=");

Copyright © 2015, QNX Software Systems Limited

39

Creating Your Own Application Window Manager

size[0] = atoi(tok);
while (*tok >= '0' && *tok <= '9'") {
tok++;
}
size[l] = atoi (tok+1l);
}
else if (strncmp(argv([i], "-pos=", strlen("-pos=")) == 0) {
/**
** The syntax of the pos option is -pos=(x), (y).
**/
tok = argv[i] + strlen("-pos=");

pos[0] = atoi(tok);
while (*tok >= '0' && *tok <= '9') {
tok++;
}
pos[l] = atoi (tok+l);
}
else if (strncmp(argv[i], "-order=", strlen("-order=")) == 0) {
tok = argv[i] + strlen("-order=");
zorder = atoi (tok):;
}
else if (strncmp(argv[i], "-name=", strlen("-name=")) == 0) {
tok = argv[i] + strlen("-name=");
if (group name) {
free (group name) ;
}
group name = strdup (tok);
}
else {
/*‘k
** Make sure we say something instead of silently ignoring a
** command line option.
**/

fprintf (stderr, "invalid command line option: %s\n", argv[i]);

/**

** The first step is to connect to the windowing system. A standard

** application would pass a 0 or SCREEN APPLICATION CONTEXT for the

** gecond argument. We are demonstration some of the features the

** gscreen windowing system provides to window managers, so in our case
** we want to pass SCREEN WINDOW MANAGER CONTEXT. For security reasons,
** this can only succeed if the application is started as root.

**/

rc = screen_create_context(&screen_ctx, SCREEN_WINDOW_MANAGER_CONTEXT);

40 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

//
//
//
//
//
//

if (rc) {
perror ("screen context create");

goto faill;

/**
** Now we create a window. It is not necessary to have a window to get window
** manager events like window creation and destruction notifications. We

** create a window so we can get input (e.g., pointer and keyboard) events.
**/

rc = screen create window (&screen win, screen ctx);
if (rc) {
perror ("screen create window");

goto fail2;

/**
** We are going to use a plain memset to fill our window with a solid
** color. In order to guarantee that we will get a pointer to the buffer,
** we must set the usage to SCREEN USAGE WRITE. The SCREEN PROPERTY USAGE
** requires an array of a single integer. We will use val as a generic

** variable to hold our usage temporarily.

**/

val = SCREEN USAGE WRITE;
rc = screen set window property iv(screen win, SCREEN PROPERTY USAGE, &val);
if (rc) |

perror ("screen set window property iv (SCREEN PROPERTY USAGE)");

goto fail3;

val = SCREEN_ FORMAT RGB565;
rc = screen_ set window property iv(screen win, SCREEN PROPERTY FORMAT, &val);
if (rc) |

perror ("screen set window property iv(SCREEN PROPERTY FORMAT)");

goto fail3;

/**

** By default, windows are full screen unless the application specifically
** gsets the window size. We don't necessarily want to be full screen,

** gsince we'll want to run a couple of other applications to show that we
** are getting window manager events. The SCREEN PROPERTY SIZE requires

** two integers (the width and height), so we use the iv variant and pass
** size, which is an array of two.

**/

Copyright © 2015, QNX Software Systems Limited 41

Creating Your Own Application Window Manager

rc = screen set window property iv(screen win, SCREEN PROPERTY SIZE, size);
if (rc) {

perror ("screen set window property iv(SCREEN PROPERTY SIZE)");

goto fail3;

/xx

** We also allow the position of our window to be controlled by the -pos
** command line argument. This might be useful if the default position

** obscured an area of interest of another window we want to see while

** running this tutorial. The SCREEN PROPERTY POSITION also requires two
** integers (the x and y offsets), so again we use the iv variant and pass
** pos, which is an array of two integers.

**/

rc = screen_ set window property iv(screen win, SCREEN PROPERTY POSITION, pos):;
if (rc) {

perror ("screen set window property iv (SCREEN PROPERTY POSITION)");

goto fail3;

rc = screen set window property iv(screen win, SCREEN PROPERTY ZORDER, &zorder);
if (rc) |

perror ("screen set window property iv(SCREEN PROPERTY POSITION)");

goto fail3;

** A window will never be visible until at least one buffer was created
** to hold its contents and one frame was posted. Because we don't plan to
** change the contents of this window, we don't need more than one buffer.

**/

rc = screen create window buffers(screen win, 1);
if (rc) {
perror("screen_create_window_buffers");

goto fail3;

Jx*
** We want to fill our window with a solid color so we can see it. To do
** that, we will need to get a pointer to the buffer. We get the buffer
** first, so we can later query the pointer and stride properties that we
** need. The SCREEN PROPERTY RENDER BUFFERS returns up to n buffers, where
** n is the number of buffers created or attached to a window. We've

** created one, so we only need to pass in an array of one buffer handle.

42 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

rc = screen get window property pv(screen win,
SCREEN_PROPERTY RENDER BUFFERS,
(void **)&screen buf);
if (rc) {
perror ("screen get pixmap property pv (SCREEN PROPERTY RENDER BUFFERS)");
goto fail3;

/**
** Now we query the pointer from our buffer. Because we've set the usage
** to include write access, this should be a pointer to memory we can
** write to. The SCREEN PROPERTY POINTER returns a single pointer, so we
** pass the address of a void pointer variable, which is equivalent to
** passing an array of one pointer.

**/

rc = screen get buffer property pv(screen buf, SCREEN PROPERTY POINTER, &pointer);
if (rc) |

perror ("screen get buffer property pv (SCREEN PROPERTY POINTER)") ;

goto fail3;

** The last piece of information we need before we can fill our window

** with a solid color is the stride of the buffer. The stride is the size,
** in bytes, of each line of the buffer. This may or may not be the same
** as the width times the bit depth. The SCREEN PROPERTY STRIDE writes to
** an array of one integer, so we can pass in the address of our stride

** variable.

**/

rc = screen get buffer property iv(screen buf, SCREEN PROPERTY STRIDE, &stride);
if (rc) |

perror ("screen get buffer property iv(SCREEN PROPERTY STRIDE)");

goto fail3;

/**
** The following line fills the window buffer with a solid color pattern.
** We don't really care about the color, as long as we see something on
** the screen, so we will simply use memset. The transparency will be off
** by default, and our format is RGBX8888, so we don't need to put a 255
** in the alpha channel.

**/

memset (pointer, 0x80, stride * size[l]);

Copyright © 2015, QNX Software Systems Limited 43

Creating Your Own Application Window Manager

// to test window group
rc = screen create window group(screen win, group name) ;
if (rc) {

perror ("screen create window group");

goto fail3;

/**
** Nothing is going to be visible on the screen until we post the changes.
** Posting will tell the windowing system that we're done drawing into our
** render buffer and that we want the changes to be made visible. When we
** post we must indicate which parts of the buffer have changed. This
** allows the composited windowing system to be smart and redraw only the
** parts of the frame buffer that need an update. Since this is our first

** frame we naturally put a full dirty rect.

**/
int rect[4] = { 0, 0, size[0], size[l] };
rc = screen post window(screen win, screen buf, 1, rect, 0);

if (rc) {
perror ("screen post window");

goto fail3;

rc = screen flush context (screen ctx, SCREEN WAIT IDLE);
if (rc) |
perror("screen_post_window");

goto fail3;

rc = screen create event (&screen ev);
if (rc) |
perror ("screen create event");

goto fail3;
screen display t *displays;
int display count = 0, port;
printf ("checking displays\n");
screen get context property iv(screen ctx, SCREEN PROPERTY DISPLAY COUNT, &display count);

printf ("$d displays\n", display count);

displays = malloc(display count * sizeof (screen display t));
screen get context property pv(screen ctx, SCREEN PROPERTY DISPLAYS, (void *)displays);

44 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

{
screen get display property iv(displays[i],

for(i = 0; i1 < display count; i++)

screen get display property iv(displays[i],

printf ("display %d (port %d) is %stached\n",

winmgr->screen ctx screen_ctx;

winmgr->screen win screen_win;

winmgr->screen_ev = screen_ev;

return EOK;

fail3:

screen destroy window(screen win);
fail2:

screen destroy context (screen ctx);
faill:

return rval;

void *screen thread(void *arg)

{

window manager t *winmgr

const int exit area size 20;

screen context t screen ctx

screen window t screen win

screen_event t screen ev

winmgr->screen ev;

/*

screen window t win;

winmgr->screen win;

SCREEN_PROPERTY_ATTACHED, &val) ;
SCREEN_ PROPERTY ID, é&port);
i, port, val?"at":"de");

(window manager t*)arg;

winmgr->screen ctx; /* connection to screen windowing system */

/* native handle for our window */

/* handle used to pop events from our queue */
stores a window contained in an event */
of the window on screen */

for simple property queries */

pos, size */
user handles */

string properties */

/* virtual address of the window buffer */

int size[2] = { 64, 64 }; /* size
int val; /* used
int pair([2]; /* used to query
void *ptr; /* used to query
char str[128]; /* used to query
int i; /* loop/frame counter */
// void *pointer;
// int zorder = 0;
screen display t *displays, disp;
int display count = 0, port;
// char *group name = strdup ("default-group");
pthread setname np(winmgr->screen tid = pthread

while

{

(winmgr->state & WINMGR UPDATE)

Copyright © 2015, QNX Software Systems Limited

self (), "screen_monitor");

45

Creating Your Own Application Window Manager

while (!screen get event (screen ctx, screen ev, ~0L))
{
screen get event property iv(screen ev, SCREEN PROPERTY TYPE, &val);

switch (val) {
case SCREEN_EVENT_DISPLAY:

if (screen get event property pv(screen ev,
SCREEN_PROPERTY_ DISPLAY,
(void *)e&disp) == 0) {

printf ("SCREEN EVENT DISPLAY (display=%p)\n", disp);
} else {
perror ("SCREEN PROPERTY DISPLAY");
break;
}
screen get display property iv(disp, SCREEN PROPERTY TYPE, &val);

switch (val) {
case SCREEN DISPLAY TYPE HDMI:
screen get display property iv(disp,
SCREEN_PROPERTY ATTACHED,
&val) ;
port = 0;
screen get display property iv(disp,
SCREEN_PROPERTY 1D,
&port) ;
printf ("HDMI display (port %d) is %stached\n",
port, val?"at":"de");
break;
default:
printf ("display %$p is type $#x\n", disp, val);
break;
}
break;
case SCREEN EVENT IDLE:
screen get event property iv(screen ev,
SCREEN_PROPERTY IDLE STATE,
&val) ;
printf ("SCREEN EVENT IDLE STATE (state=%d)\n", val);
screen get context property iv(screen ctx,
SCREEN_PROPERTY IDLE STATE,
&val) ;
printf ("context idle state is %d\n", val);
screen get context property iv(screen ctx,
SCREEN_PROPERTY DISPLAY COUNT,
&display count);
printf ("%d displays\n", display count);

46 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

displays = malloc(display count * sizeof (screen display t));
screen get context property pv(screen ctx,
SCREEN_PROPERTY DISPLAYS,
(void *)displays);

for (i=0; i < display count; i++) {
screen get display property iv(displays[i],
SCREEN_ PROPERTY KEEP AWAKES,
&val) ;
printf ("display %d has %d keep awake windows\n", i, wval);
}
free(displays);
break;
case SCREEN EVENT CREATE:

screen get event property pv(screen ev,
SCREEN_PROPERTY_ WINDOW,

(void **)&win) ;

screen get window property iv(win,
SCREEN_ PROPERTY OWNER PID,
&val) ;

printf ("SCREEN_ EVENT CREATE (window=0x%08x, pid=%d, handle=0x%08x)\n",

(size t)win, val, (size t)ptr);
break;
case SCREEN EVENT PROPERTY:

screen get event property pv(screen ev,
SCREEN PROPERTY WINDOW,
(void **)&win) ;

screen get event property iv(screen ev,
SCREEN PROPERTY NAME,
&val) ;

switch (val) {
case SCREEN PROPERTY ALPHA MODE:
screen get window property iv(win,
SCREEN PROPERTY ALPHA MODE,
s&val) ;
if (val) |
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY ALPHA MODE,
value=SCREEN_ALPHA_MODE_PREMULTIPLIED)\n",
(size t)win);
} else {
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY ALPHA MODE,
value=SCREEN ALPHA MODE NONPREMULTIPLIED)\n",

(size t)win);

Copyright © 2015, QNX Software Systems Limited 47

Creating Your Own Application Window Manager

break;
case SCREEN PROPERTY BRIGHTNESS:
screen get window property iv(win,
SCREEN_PROPERTY BRIGHTNESS,
&val) ;
printf ("SCREEN_ EVENT PROPERTY (window=0x%08x,
pname=SCREEN_ PROPERTY BRIGHTNESS, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY BUFFER COUNT:
screen get window property iv(win,
SCREEN_ PROPERTY BUFFER COUNT,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_ PROPERTY BUFFER COUNT, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY BUFFER SIZE:
screen get window property iv(win,
SCREEN_ PROPERTY BUFFER SIZE,
pair) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_ PROPERTY BUFFER COUNT, value=%dx%d)\n",
(size t)win, pair([0], pair[l]);
break;
case SCREEN PROPERTY CLASS:
screen get window property cv(win,
SCREEN_PROPERTY CLASS,
sizeof (str),
str);
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_PROPERTY CLASS, value=%s)\n",
(size t)win, str);
break;
case SCREEN PROPERTY COLOR SPACE:
screen get window property iv(win,
SCREEN_ PROPERTY COLOR_ SPACE,
&val) ;
if (val) |
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY COLOR SPACE,
value=SCREEN COLOR_ SPACE LINEAR)\n",
(size t)win);
} else {
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY COLOR SPACE,
value=SCREEN COLOR_SPACE sRGB)\n",

48 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

(size t)win);
}
break;
case SCREEN PROPERTY CONTRAST:
screen get window property iv(win,
SCREEN PROPERTY CONTRAST,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY CONTRAST, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY FLIP:
screen get window property iv(win,
SCREEN PROPERTY FLIP,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY FLIP, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY FORMAT:
screen get window property iv(win,
SCREEN PROPERTY FORMAT,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY FORMAT, value=",

(size t)win);

switch (val) {

case SCREEN FORMAT BYTE:
printf ("SCREEN FORMAT BYTE)\n");
break;

case SCREEN FORMAT RGBA4444:
printf ("SCREEN FORMAT RGBA4444)\n");
break;

case SCREEN FORMAT RGBX4444:
printf("SCREEN_FORMAT_RGBX4444)\n");
break;

case SCREEN FORMAT RGBA5551:
printf ("SCREEN FORMAT RGBA5551)\n");
break;

case SCREEN_FORMAT RGBX5551:
printf ("SCREEN FORMAT RGBX5551)\n");
break;

case SCREEN FORMAT RGB565:
printf ("SCREEN FORMAT RGB565)\n");
break;

case SCREEN FORMAT RGB888:

Copyright © 2015, QNX Software Systems Limited 49

Creating Your Own Application Window Manager

50

printf ("SCREEN FORMAT RGB888)\n");
break;
case SCREEN FORMAT RGBA8888:
printf ("SCREEN FORMAT RGBA8888)\n");
break;
case SCREEN FORMAT RGBX8888:
printf("SCREEN_FORMAT_RGBX8888)\n");
break;
case SCREEN FORMAT YVU9:
printf ("SCREEN FORMAT YVU9)\n");
break;
case SCREEN FORMAT YUV420:
printf ("SCREEN FORMAT YUV420)\n");
break;
case SCREEN FORMAT NV12:
printf("SCREEN_FORMAT_NVIZ)\n");
break;
case SCREEN FORMAT YV12:
printf("SCREEN_FORMAT_YVIZ)\n");
break;
case SCREEN_ FORMAT UYVY:
printf ("SCREEN FORMAT UYVY)\n");
break;
case SCREEN FORMAT YUY2:
printf ("SCREEN FORMAT YUY2)\n");
break;
case SCREEN FORMAT YVYU:
printf("SCREEN_FORMAT_YUYZ)\n");
break;
case SCREEN FORMAT V422:
printf ("SCREEN FORMAT V422)\n");
break;
case SCREEN_FORMAT AYUV:
printf ("SCREEN FORMAT AYUV)\n");
break;
default:
printf ("%d)\n", val);
break;
}
break;
case SCREEN PROPERTY GLOBAL ALPHA:
screen get window property iv(win,
SCREEN PROPERTY GLOBAL ALPHA,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY GLOBAL ALPHA, value=%d)\n",

(size t)win, val);

Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

break;
case SCREEN PROPERTY HUE:
screen get window property iv(win,
SCREEN_ PROPERTY HUE,
&val) ;
printf ("SCREEN_ EVENT PROPERTY (window=0x%08x,
pname=SCREEN_ PROPERTY HUE, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY ID STRING:
screen get window property cv(win,
SCREEN_ PROPERTY ID STRING,
sizeof (str),
str);
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_PROPERTY ID STRING, value=%s)\n",
(size t)win, str);
break;
case SCREEN PROPERTY MIRROR:
screen get window property iv(win,
SCREEN PROPERTY MIRROR,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY MIRROR, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY POSITION:
screen get window property iv(win,
SCREEN_ PROPERTY POSITION,
pair) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_PROPERTY POSITION, value=%d,%d)\n",
(size t)win, pair([0], pair([1l]);
break;
case SCREEN PROPERTY ROTATION:
screen get window property iv(win,
SCREEN_PROPERTY ROTATION,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY ROTATION, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY SATURATION:
screen get window property iv(win,
SCREEN_ PROPERTY SATURATION,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,

Copyright © 2015, QNX Software Systems Limited 51

Creating Your Own Application Window Manager

pname=SCREEN PROPERTY SATURATION, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY SIZE:
screen get window property iv(win,
SCREEN_ PROPERTY SIZE,
pair);
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY SIZE, value=%dx%d)\n",
(size t)win, pair[0], pair([l]);
break;
case SCREEN PROPERTY SOURCE POSITION:
screen get window property iv(win,
SCREEN PROPERTY SOURCE POSITION,
pair);
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY SOURCE POSITION, value=%d,%d)\n",
(size t)win, pair[0], pair([l]);
break;
case SCREEN PROPERTY SOURCE SIZE:
screen get window property iv(win,
SCREEN_ PROPERTY SOURCE SIZE,
pair);
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY SOURCE SIZE, value=%dx%d)\n",
(size t)win, pair[0], pair([l]);
break;
case SCREEN PROPERTY STATIC:
screen get window property iv(win,
SCREEN PROPERTY STATIC,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY STATIC, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY SWAP INTERVAL:
screen get window property iv(win,
SCREEN_ PROPERTY SWAP INTERVAL,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY SWAP_ INTERVAL, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY TRANSPARENCY:
screen get window property iv(win,
SCREEN PROPERTY TRANSPARENCY,
&val) ;

52 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY TRANSPARENCY, value=",

(size t)win);

switch (val) {
case SCREEN TRANSPARENCY NONE:
printf ("SCREEN TRANSPARENCY NONE)\n");
break;
case SCREEN TRANSPARENCY TEST:
printf ("SCREEN TRANSPARENCY TEST)\n");
break;
case SCREEN TRANSPARENCY SOURCE COLOR:
printf ("SCREEN TRANSPARENCY SOURCE COLOR)\n");
break;
case SCREEN TRANSPARENCY SOURCE OVER:
printf ("SCREEN TRANSPARENCY SOURCE_OVER)\n");
break;
default:
printf ("&d)\n", val);
break;
}
break;
case SCREEN PROPERTY USAGE:
screen get window property iv(win,
SCREEN_ PROPERTY USAGE,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_PROPERTY USAGE, value=0x%04x)\n",
(size t)win, val);
break;
case SCREEN PROPERTY VISIBLE:
screen get window property iv(win,
SCREEN_PROPERTY VISIBLE,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN_PROPERTY VISIBLE, value=%d)\n",
(size t)win, val);
break;
case SCREEN PROPERTY ZORDER:
screen get window property iv(win,
SCREEN_ PROPERTY ZORDER,
&val) ;
printf ("SCREEN EVENT PROPERTY (window=0x%08x,
pname=SCREEN PROPERTY ZORDER, value=%d)\n",
(size t)win, val);
break;
default:

Copyright © 2015, QNX Software Systems Limited 53

Creating Your Own Application Window Manager

printf ("SCREEN EVENT PROPERTY (window=0x%08x, pname=%d)\n",
(size t)win, val);
break;
}
break;
case SCREEN EVENT CLOSE:
screen get event property pv(screen ev,
SCREEN_PROPERTY WINDOW,
(void **)&win) ;
screen get window property pv(win,
SCREEN_ PROPERTY USER HANDLE,
&ptr);
printf ("SCREEN_ EVENT CLOSE (window=0x%08x, handle=0x%08x)\n",
(size t)win, (size t)ptr);
screen destroy window (win);
break;
case SCREEN EVENT POST:
screen get event property pv(screen ev,
SCREEN_PROPERTY WINDOW,
(void **)&win) ;
screen get window property pv(win,
SCREEN_ PROPERTY USER HANDLE,
&ptr);
printf ("SCREEN EVENT POST (window=0x%08x, handle=0x%08x)\n",

(size t)win, (size t)ptr);

set window properties (win);

screen flush context (screen ctx, 0);

break;

case SCREEN EVENT INPUT:

screen get event property iv(screen ev,
SCREEN_PROPERTY DEVICE INDEX,
&val) ;

printf ("SCREEN EVENT INPUT (index=%d, ", val);

screen get event property iv(screen ev,
SCREEN_PROPERTY INPUT VALUE,
&val) ;

printf ("value=%d)\n", val);

break;

case SCREEN_ EVENT JOG:

screen get event property iv(screen ev,
SCREEN PROPERTY DEVICE INDEX,
&val) ;

printf ("SCREEN EVENT JOG (index=%d, ", val);

screen get event property iv(screen ev,
SCREEN PROPERTY JOG COUNT,
&val) ;

54 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

printf ("count=%d)\n", val);
break;
case SCREEN EVENT POINTER:

screen get event property iv(screen ev,
SCREEN PROPERTY DEVICE INDEX,
&val) ;

printf ("SCREEN EVENT POINTER (index=%d, ", val);

screen get event property iv(screen ev,
SCREEN_ PROPERTY POSITION,
pair);

printf ("pos=[%d,%d], ", pair([0], pair[l]);

screen get event property iv(screen ev,
SCREEN_ PROPERTY BUTTONS,
&val) ;

printf ("buttons=0x%04x)\n", val);

if (val) {
if (pair[0] >= size[0] - exit area size &&
pair[0] < size[0] &&

1
]
pair[l] >= 0 &&
pair[l] < exit area size) {

goto end;

}
break;
case SCREEN EVENT KEYBOARD:

screen get event property iv(screen ev,
SCREEN_ PROPERTY DEVICE INDEX,
&val) ;

printf ("SCREEN EVENT KEYBOARD (index=%d, ", val);

screen get event property iv(screen ev,
SCREEN_PROPERTY KEY CAP,
&val) ;

printf ("cap=%d, ", val);

screen get event property iv(screen ev,
SCREEN_PROPERTY KEY FLAGS,
&val) ;

printf ("flags=%d, ", val);

screen get event property iv(screen ev,
SCREEN_PROPERTY KEY MODIFIERS,
&val) ;

printf ("modifiers=%d, ", wval);

screen get event property iv(screen ev,
SCREEN_PROPERTY KEY SCAN,
&val) ;

printf ("scan=%d, ", val);

screen get event property iv(screen ev,

Copyright © 2015, QNX Software Systems Limited 55

Creating Your Own Application Window Manager

SCREEN PROPERTY KEY SYM,
&val) ;
printf ("sym=%d)\n", val);

switch (val) {
case KEYCODE ESCAPE:
goto end;
}
break;
case SCREEN EVENT MTOUCH TOUCH:
case SCREEN EVENT MTOUCH MOVE:
case SCREEN EVENT MTOUCH RELEASE:
switch (val) {
case SCREEN EVENT MTOUCH TOUCH:
printf ("SCREEN EVENT MTOUCH TOUCH (") ;
break;
case SCREEN EVENT MTOUCH MOVE:
printf ("SCREEN EVENT MTOUCH MOVE (") ;
break;
case SCREEN EVENT MTOUCH RELEASE:
printf ("SCREEN EVENT MTOUCH RELEASE (") ;
break;
1
screen get event property pv(screen ev,
SCREEN_ PROPERTY WINDOW,
(void **)&win) ;
printf ("window=0x%08x, ", (size t)win);
screen get event property iv(screen ev,
SCREEN PROPERTY TOUCH ID,
&val) ;
printf("id=%d, ", wval);
screen get event property iv(screen ev,
SCREEN_ PROPERTY SEQUENCE ID,
&val) ;
printf ("sequence=%d, ", wval);
screen _get event property iv(screen ev,
SCREEN_ PROPERTY POSITION,
pair);
printf ("pos=[%d,%d], ", pair[0], pairll]);
screen get event property iv(screen ev,
SCREEN_ PROPERTY SIZE,
pair);
printf("size=[%d,%d], ", pair([0], pairll]);
screen get event property iv(screen ev,
SCREEN_ PROPERTY SOURCE POSITION,
pair);

printf ("source pos=[%d,%d], ", pair[0], pair[l]);

56 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

screen get event property iv(screen ev,
SCREEN PROPERTY SOURCE SIZE,
pair);

printf ("source size=[%d,%d], ", pair[0], pair[l]);

screen get event property iv(screen ev,
SCREEN PROPERTY TOUCH ORIENTATION,
&val) ;

printf ("orientation=%d, ", wval);

screen get event property iv(screen ev,
SCREEN PROPERTY TOUCH PRESSURE,
&val) ;

printf ("pressure=%d)\n", val);

break;

case SCREEN EVENT USER:

break;

end:
screen destroy event (screen ev);
screen destroy window(screen win);

screen destroy context (screen ctx);

return 0;

Copyright © 2015, QNX Software Systems Limited

57

Creating Your Own Application Window Manager

launcher.c

*

*/

Interaction with the 1auncher of a simple window manager

SONXLicenseC:
Copyright 2012, ONX Software Systems Limited. All Rights Reserved.

This software is QNX Confidential Information subject to
confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
WRITING.

You must obtain a written license from and pay applicable license

fees to QONX Software Systems Limited before you may reproduce, modify

or distribute this software, or any work that includes all or part
of this software. For more information visit

http://licensing.gqnx.com or email licensing@gnx.com.

This file may contain contributions from others. Please review
this entire file for other proprietary rights or license notices,
as well as the QONX Development Suite License Guide at
http://licensing.qnx.com/license-guide/ for other information.

$

#include "struct.h"

int launcher pps(window manager t *winmgr)

{

58

char *msg, *dat, *res, *err, *pkg, *errstr;

// There must be a msg and a dat attribute
msg = pps_lookup (winmgr, "msg");

’

(
res = pps_ lookup (winmgr, "res")
err = pps_lookup(winmgr, "err");
dat = pps lookup (winmgr, "dat")
pkg = pps_lookup (winmgr, "id");

errstr = pps_ lookup (winmgr, "errstr");

if ((msg == NULL && res == NULL) || (dat == NULL && err == NULL))

return EINVAL;

if (winmgr->verbose) {
if (msgqg)
SLOG _NOTICE ("launcher - msg:%s dat:%s", msg, dat);

Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

else
SLOG_NOTICE ("launcher - res:%s dat/err:%s", res, dat ? dat : err);

if (msg) {
if (strcmp(msg, CMD STOPPED) == 0) {
core app stopped(winmgr, dat);
} else if (strcmp(msg, CMD LOWMEM) == 0) {

coreilowmem(winmgr, dat) ;

} else {
if (strcmp(res, CMD START) == 0) {
core app started(winmgr, pkg, dat ? dat : err, dat 2 0 : 1, errstr);
}
if (strcmp(res, CMD DEBUG) == 0) {
core app started(winmgr, pkg, dat ? dat : err, dat 2 0 : 1, errstr);

return EOK;

void launcher send(window manager t *winmgr, char *cmd, char *data, char *id)
{

int msgsize;

char msgbuf[4096];

if (strcmp(cmd, CMD START) == 0 || strcmp(cmd, CMD DEBUG) == 0) {

msgsize = snprintf (msgbuf, sizeof (msgbuf), "msg::%s\ndat::%s\nid::%s", cmd, data, id);
} else {

msgsize = snprintf (msgbuf, sizeof (msgbuf), "msg::%s\ndat::%s", cmd, data);

}
if (winmgr->verbose)

SLOG _NOTICE ("launch send - msg:%s dat:%s id:%s", cmd, data ? data : "", id 2 id : "");

if (pps write(winmgr->pps fd, msgbuf, msgsize) == -1) {

SLOG_NOTICE ("unable to write to launcher fd: %s", strerror (errno));

Copyright © 2015, QNX Software Systems Limited 59

Creating Your Own Application Window Manager

pps.c

Interaction with PPS control object of a simple window manager

SQONXLicenseC:
* Copyright 2012, QONX Software Systems Limited. All Rights Reserved.

* This software is QNX Confidential Information subject to

* confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
* IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
* WRITING.

* You must obtain a written license from and pay applicable license

* fees to QONX Software Systems Limited before you may reproduce, modify
* or distribute this software, or any work that includes all or part

* of this software. For more information visit

* http://licensing.gnx.com or email licensing@gnx.com.

* This file may contain contributions from others. Please review
* this entire file for other proprietary rights or license notices,
* as well as the QNX Development Suite License Guide at

* http://licensing.gnx.com/license-guide/ for other information.

* S

*/

#include "struct.h"
static int pps parse(window manager t *winmgr, char* reqgbuf);

/**

* pps thread loop

*/
void* pps_ thread(void *arg)
{

window manager t *winmgr = (window manager t*)arg;
char buf[1024];

int fd = -1;

int nread = -1;

pthread setname np(winmgr->pps tid = pthread self (), "pps");

while (1) {
while (fd == -1) {

60 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

if (winmgr->state & NAV TERMINATE) ({

goto terminate;

if ((fd = open ("/pps/services/launcher/control?wait,delta"™, O RDWR)) == -1) {
sleep (1) ;
} else {

winmgr->pps fd = fd;

while (nread == -1) {
if (winmgr->state & NAV TERMINATE) {

goto terminate;

nread = read(fd, buf, sizeof (buf)-1);
if (nread > 1) {
buf [nread] = '\0';

// process received message

if (pps parse(winmgr, buf) == EOK
&& ! (winmgr->ptype == PPS EVENT OBJECT CHANGED && !winmgr->numattrs)
&& winmgr->ptype != PPS EVENT OBJECT UNKNOWN) ({

launcher pps(winmgr) ;

if (nread == -1 && errno == EBADF) {

terminate:
close (fd) ;
pthread exit (NULL) ;

return NULL;

int pps write(int pps fd, const char *msgbuf, int msgsize)
{

int ret = 0;

Copyright © 2015, QNX Software Systems Limited 61

Creating Your Own Application Window Manager

ret = write(pps_fd, msgbuf, (unsigned)msgsize);

return ret;

int pps is open(int pps_ fd)
{

int ret = 1;
if (pps_fd == 0 || pps_fd == -1) {
ret = 0;

return ret;

pps_attr t* pps lookup attr(window manager t *winmgr, char *name)

{

int 1i;
for (i = 0; i < winmgr->numattrs; ++i)
if (strcmp(winmgr->attrs[i].name, name) == 0)

return & (winmgr->attrs([i]);
return NULL;

char* pps lookup (window manager t *winmgr, char *name)
{

pps_attr t* attr = pps lookup attr(winmgr, name);

if ('attr)
return NULL;

if (attr->value)
return attr->value;
else

return attr->name;

static int pps parse attr(window manager t *winmgr, const pps attrib t* info)
{
if (winmgr->numattrs >= MAX ATTRS) {
SLOG NOTICE ("Too many attributes.");
return E2BIG;
} else {

winmgr->attrs[winmgr->numattrs].name = info->attr name;

62 Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

winmgr->attrs|[winmgr->numattrs].encoding = info->encoding;
winmgr->attrs[winmgr->numattrs++].value = info->value;
return EOK;

static int pps parse(window manager t *winmgr, char* regbuf)
{
pps_attrib t info;

pps_status_t rc;

// Clear the request structure
winmgr->numattrs = 0;

winmgr->objname = NULL;

winmgr->ptype = PPS EVENT OBJECT UNKNOWN;

while ((rc = ppsparse(®buf, NULL, NULL, &info, 0)) != PPS END)
{
switch (rc) {
case PPS OBJECT CREATED:
winmgr->objname = info.obj name;
winmgr->ptype = PPS_EVENT OBJECT CREATED;

break;

case PPS OBJECT TRUNCATED:

case PPS OBJECT DELETED:
winmgr->objname = info.obj name;
winmgr->ptype = PPS_EVENT OBJECT DELETED;

break;

case PPS OBJECT:
if (info.obj name[0] != '@') {
return EOK;
}
winmgr->objname = info.obj name;
winmgr->ptype = PPS_EVENT OBJECT CHANGED;

break;

case PPS ATTRIBUTE DELETED: {
-—info.attr name;
int err = pps parse attr(winmgr, &info);
if (err != EOK)
return err;

break;

case PPS ATTRIBUTE: ({

Copyright © 2015, QNX Software Systems Limited

63

Creating Your Own Application Window Manager

int err = pps parse attr(winmgr, &info);

if (err != EOK)
return err;

break;

case PPS ERROR:
default:

SLOG_WARNING ("We got a parsing error.");

return EINVAL;

return EOK;

64

Copyright © 2015, QNX Software Systems Limited

Creating Your Own Application Window Manager

core.cC

Core functionality of a simple window manager

SQONXLicenseC:
* Copyright 2012, QONX Software Systems Limited. All Rights Reserved.

* This software is QNX Confidential Information subject to

* confidentiality restrictions. DISCLOSURE OF THIS SOFTWARE
* IS PROHIBITED UNLESS AUTHORIZED BY QNX SOFTWARE SYSTEMS IN
* WRITING.

* You must obtain a written license from and pay applicable license

* fees to QONX Software Systems Limited before you may reproduce, modify
* or distribute this software, or any work that includes all or part

* of this software. For more information visit

* http://licensing.gnx.com or email licensing@gnx.com.

* This file may contain contributions from others. Please review
* this entire file for other proprietary rights or license notices,
* as well as the QNX Development Suite License Guide at

* http://licensing.gnx.com/license-guide/ for other information.

* S

*/

#include "struct.h"

void core app stopped(window manager t *winmgr, char *data)
{
/* Delete from the application list */
if (winmgr->car app.pid && !strcmp(data, winmgr->car app.pid)) {
free (winmgr->car app.pid);

winmgr->car app.pid = NULL;

if (winmgr->weather app.pid && !strcmp(data, winmgr->weather app.pid))
free (winmgr->weather app.pid);

winmgr->weather app.pid = NULL;

void
core app started(window manager t *winmgr, char *id, char *data, int error,
{

/* RAppend to the application list */

Copyright © 2015, QNX Software Systems Limited

{

char *errstr)

65

Creating Your Own Application Window Manager

if (error) {

SLOG_WARNING ("failed to launch app:

return;

if (!strcmp(id, winmgr->car app.id)) {

winmgr->car app.pid = strdup(data);

} else if (!strcmp(id, winmgr->car app.

%s", errstr);

id)) |

winmgr->weather app.pid = strdup(data);

void core lowmem(window manager t *winmgr,
{
}

66

char *data)

Copyright © 2015, QNX Software Systems Limited

Index

Index

/pps/services/launcher/control object 20

A

application management 20
apps 9, 11-14, 19, 23-25
installing 9, 11-12

launching 9

packaging 9

running 12

starting 9, 12, 23

stopping 13, 24

uninstalling 14

window manager 23-25

window manager can start and stop 19

E

events 28

L

launching applications 12

P

PPS 12-13, 20
launcher control object 12-13, 20
messages 20

Copyright © 2015, QNX Software Systems Limited

S

Screen 25
start command 23
stop command 24

T

Technical support 8
Typographical conventions 6

U

uninstalling apps 14

w

window management 23, 25
window manager 19-20, 23, 25, 28, 32
handling events 28
interacting with PPS 20
reference code for 32
requirements of a 20
responsible for application windows 25
setting up 25
simple example of 32
write() 23-24

67

Index

68

Copyright © 2015, QNX Software Systems Limited

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Packaging, Installing, and Launching Apps
	Packaging a native C/C++ app for installation
	Installing a packaged app on the target
	Launching an app on the target
	Stopping all apps on the target
	Uninstalling Apps
	Sample bar-descriptor.xml files

	Creating Your Own Application Window Manager
	Application management
	Interacting with the /pps/services/launcher/control object
	Starting an application
	Stopping an application

	Window management
	Set up Screen
	Handle Screen events

	An example of a simple application window manager
	struct.h
	main.c
	screen.c
	launcher.c
	pps.c
	core.c

	Index

